Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in sever...Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.展开更多
Because the standard four-stage operation and con-trol strategy cannot fully utilize the gravitational potential energy of a train operating on a long and steep downhill segment,this paper further improves the method ...Because the standard four-stage operation and con-trol strategy cannot fully utilize the gravitational potential energy of a train operating on a long and steep downhill segment,this paper further improves the method for train operation and control strategy.The improved operation includes three stages of acceleration,coasting-speed limit cruising,and brak-ing.Taking the speed limit,time limit,and distance limit as the constraints,the coasting condition switching point,braking condition switching point,traction coefficient,and braking force coefficient are used as the decision variables.Then,an improved train traction energy consumption model is constructed,and an improved differential evolution algorithm is designed to solve this model.The improved method is used to simulate two long and steep downhill segments of the Nanning metro.The results show that the improved method can meet the requirements of speed limit,time limit,and distance limit.Compared with the standard four-stage operation,the improved train operation and control strategy can reduce train energy consumption by more than 40%on the two long and steep downhill segments;compared with other similar algorithms,the improved algorithm is more suitable for solving the model.展开更多
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different tre...BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good.展开更多
To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insul...To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai...The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.展开更多
Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consu...Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.展开更多
In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st...In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary eq...In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary equilibrium code is developed to investigate such advanced tokamak discharges with current reversal equilibrium configuration. The calculation results show that the reversal current equilibrium can maintain finite pressure and also has considerable effects on the position of the X-point and the magnetic separatrix shape, and hence also on the position of the strike point on the divertor plates, which is extremely useful for magnetic design, MHD stability analysis, and experimental data analysis etc. for the AC plasma current operation on tokamaks.展开更多
East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment...East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems.展开更多
Booming low-power electric propulsion systems require 1–2 A hollow cathodes.Such cathodes are expected to go through more frequent ignitions in the low orbit,but the impact of cyclic ignitions on such 1–2 A barium t...Booming low-power electric propulsion systems require 1–2 A hollow cathodes.Such cathodes are expected to go through more frequent ignitions in the low orbit,but the impact of cyclic ignitions on such 1–2 A barium tungsten hollow cathodes with a heater was not clear.In this study,a 12,638-cyclic ignition test and a 6,000-hour-long life test on two identical cathodes were carried out.The discharge voltage of the cathode and the erosion of the orifice after cyclic ignition were all larger than that of the cathode after stable operation.This indicated that the impact of cycle ignition on the discharge performance of a low current BaO-W cathode with a heater was higher than that of stable operation.The results of the ion energy distribution function measured during the ignition period indicated that the main reason for the orifice expansion was ion bombardment.Therefore,it was necessary to pay attention to the number of ignitions for the lifetime of this kind of cathode.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,whe...In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.展开更多
Background: In Nigeria, adolescents and young people (AYP) aged 10 - 24, comprise 22.3% of the population and with HIV prevalence of 3.5%. The AYP living with HIV enrolled at the 68 NARHY, Lagos reflects the national ...Background: In Nigeria, adolescents and young people (AYP) aged 10 - 24, comprise 22.3% of the population and with HIV prevalence of 3.5%. The AYP living with HIV enrolled at the 68 NARHY, Lagos reflects the national challenges with poor viral suppression. The OTZ program aligns with the UNAIDS 95-95-95 goals. It seeks to empower AYPLHIV to be in charge of their treatment and commit to triple zero outcomeszero missed appointments, zero missed drugs, and zero viral loads. The purpose of the study was to assess the impact of the OTZ program on viral load suppression among members of the adolescent club in 68 NARHY, Lagos. Method: A cross-sectional retrospective study to evaluate the impact of the OTZ program on the viral load of 53 AYP enrolled in the OTZ program between March 2019 to December 2019 was analyzed. The Percentage of viral load suppression before enrollment compared with 6 and 12 months after enrollment into the OTZ program. The AYP is grouped into 10 - 14, 15 - 19, and 20 - 24 years. Activities conducted were peer driven monthly meetings with the AYP during which the adolescents interacted on issues relating to improving their treatment outcomes, healthcare workers reviewed their clinical status, viral load result, provider peer counseling, and caregivers engagement to support adherence to medication and ARV refills. Results: Before OTZ, 81% aged 10 - 14 years, 75% aged 15 - 19 years, and 25% aged 20 - 24 years were virally suppressed (VL less than 1000 copies/ml). Six months after enrollment, 94% were virally suppressed95% aged 10 - 14 years, 96% aged 15 - 19 years, and 66% aged 20-24 years. Twelve months after enrollment, 96% of AYP were virally suppressed100% aged 10-14 years, 93% aged 15 - 19 years, and 100% aged 20 - 24 years. Males viral load (VL) suppression improved from 79% to 96% and 92%, while females VL suppression improved from 69% to 93% and 100% at 6 and 12 months respectively. Conclusion: The OTZ activities contributed to improved viral load suppression in the AYP of the facility.展开更多
The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the...The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was pr...Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.展开更多
With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient ...With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient mission consideration and single evaluation dimension in the existing evaluation approaches,this study proposes a mission-oriented capability evaluation method for combat systems based on operation loop.Firstly,a combat network model is given that takes into account the capability properties of combat nodes.Then,based on the transition matrix between combat nodes,an efficient algorithm for operation loop identification is proposed based on the Breadth-First Search.Given the mission-capability satisfaction of nodes,the effectiveness evaluation indexes for operation loops and combat network are proposed,followed by node importance measure.Through a case study of the combat scenario involving space-based support against surface ships under different strategies,the effectiveness of the proposed method is verified.The results indicated that the ROI-priority attack method has a notable impact on reducing the overall efficiency of the network,whereas the O-L betweenness-priority attack is more effective in obstructing the successful execution of enemy attack missions.展开更多
文摘Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.
基金the National Natural Science Foundation of China(52072081)the Key Project of Science and Technology of Guangxi(2023AA19005)Guangxi Manufacturing Systems and Advanced Manufacturing Technology Key Laboratory Director Fund(22-050-44-S015).
文摘Because the standard four-stage operation and con-trol strategy cannot fully utilize the gravitational potential energy of a train operating on a long and steep downhill segment,this paper further improves the method for train operation and control strategy.The improved operation includes three stages of acceleration,coasting-speed limit cruising,and brak-ing.Taking the speed limit,time limit,and distance limit as the constraints,the coasting condition switching point,braking condition switching point,traction coefficient,and braking force coefficient are used as the decision variables.Then,an improved train traction energy consumption model is constructed,and an improved differential evolution algorithm is designed to solve this model.The improved method is used to simulate two long and steep downhill segments of the Nanning metro.The results show that the improved method can meet the requirements of speed limit,time limit,and distance limit.Compared with the standard four-stage operation,the improved train operation and control strategy can reduce train energy consumption by more than 40%on the two long and steep downhill segments;compared with other similar algorithms,the improved algorithm is more suitable for solving the model.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
文摘BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good.
基金supported in part by the Huxiang Youth Talent Support Program(No.2020RC3030)in part by the Foundation of State Key Laboratory of Pulsed Power Laser Technology(Nos.SKL2021ZR02 and SKL2021KF05)。
文摘To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金supported in part by the National Natural Science Foundation of China under Grants 62171154in part by the National Natural Science Foundation of Shandong Province under Grant ZR2020MF007+1 种基金in part by the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2023030。
文摘The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.
基金support by the National Science and Technology Council under grant no.NSTC 112-2221-E-167-017-MY3.
文摘Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.
基金supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB114 and 2023BAB094).
文摘In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金supported by National Natural Science Foundation of China (No. 12075276)partly by the Comprehensive Research Facility for Fusion Technology Program of China (No. 2018000052-73-01-001228)。
文摘In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary equilibrium code is developed to investigate such advanced tokamak discharges with current reversal equilibrium configuration. The calculation results show that the reversal current equilibrium can maintain finite pressure and also has considerable effects on the position of the X-point and the magnetic separatrix shape, and hence also on the position of the strike point on the divertor plates, which is extremely useful for magnetic design, MHD stability analysis, and experimental data analysis etc. for the AC plasma current operation on tokamaks.
文摘East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems.
基金supported by the Key Projects of Schoolenterprise Joint Fund(No.U22B20120)the National Science Fund for Distinguished Young Scholars(No.52107141)。
文摘Booming low-power electric propulsion systems require 1–2 A hollow cathodes.Such cathodes are expected to go through more frequent ignitions in the low orbit,but the impact of cyclic ignitions on such 1–2 A barium tungsten hollow cathodes with a heater was not clear.In this study,a 12,638-cyclic ignition test and a 6,000-hour-long life test on two identical cathodes were carried out.The discharge voltage of the cathode and the erosion of the orifice after cyclic ignition were all larger than that of the cathode after stable operation.This indicated that the impact of cycle ignition on the discharge performance of a low current BaO-W cathode with a heater was higher than that of stable operation.The results of the ion energy distribution function measured during the ignition period indicated that the main reason for the orifice expansion was ion bombardment.Therefore,it was necessary to pay attention to the number of ignitions for the lifetime of this kind of cathode.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金supported in part by the National Natural Science Foundation of China under Grants 52025073 and 52107047in part by China Scholarship Council。
文摘In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.
文摘Background: In Nigeria, adolescents and young people (AYP) aged 10 - 24, comprise 22.3% of the population and with HIV prevalence of 3.5%. The AYP living with HIV enrolled at the 68 NARHY, Lagos reflects the national challenges with poor viral suppression. The OTZ program aligns with the UNAIDS 95-95-95 goals. It seeks to empower AYPLHIV to be in charge of their treatment and commit to triple zero outcomeszero missed appointments, zero missed drugs, and zero viral loads. The purpose of the study was to assess the impact of the OTZ program on viral load suppression among members of the adolescent club in 68 NARHY, Lagos. Method: A cross-sectional retrospective study to evaluate the impact of the OTZ program on the viral load of 53 AYP enrolled in the OTZ program between March 2019 to December 2019 was analyzed. The Percentage of viral load suppression before enrollment compared with 6 and 12 months after enrollment into the OTZ program. The AYP is grouped into 10 - 14, 15 - 19, and 20 - 24 years. Activities conducted were peer driven monthly meetings with the AYP during which the adolescents interacted on issues relating to improving their treatment outcomes, healthcare workers reviewed their clinical status, viral load result, provider peer counseling, and caregivers engagement to support adherence to medication and ARV refills. Results: Before OTZ, 81% aged 10 - 14 years, 75% aged 15 - 19 years, and 25% aged 20 - 24 years were virally suppressed (VL less than 1000 copies/ml). Six months after enrollment, 94% were virally suppressed95% aged 10 - 14 years, 96% aged 15 - 19 years, and 66% aged 20-24 years. Twelve months after enrollment, 96% of AYP were virally suppressed100% aged 10-14 years, 93% aged 15 - 19 years, and 100% aged 20 - 24 years. Males viral load (VL) suppression improved from 79% to 96% and 92%, while females VL suppression improved from 69% to 93% and 100% at 6 and 12 months respectively. Conclusion: The OTZ activities contributed to improved viral load suppression in the AYP of the facility.
基金supported by the National Natural Science Foundation of China(with Granted Number 72271239,grant recipient P.J.)Research on the Design Method of Reliability Qualification Test for Complex Equipment Based on Multi-Source Information Fusion.https://www.nsfc.gov.cn/.
文摘The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
基金supported by the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2020081).
文摘Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.
文摘With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient mission consideration and single evaluation dimension in the existing evaluation approaches,this study proposes a mission-oriented capability evaluation method for combat systems based on operation loop.Firstly,a combat network model is given that takes into account the capability properties of combat nodes.Then,based on the transition matrix between combat nodes,an efficient algorithm for operation loop identification is proposed based on the Breadth-First Search.Given the mission-capability satisfaction of nodes,the effectiveness evaluation indexes for operation loops and combat network are proposed,followed by node importance measure.Through a case study of the combat scenario involving space-based support against surface ships under different strategies,the effectiveness of the proposed method is verified.The results indicated that the ROI-priority attack method has a notable impact on reducing the overall efficiency of the network,whereas the O-L betweenness-priority attack is more effective in obstructing the successful execution of enemy attack missions.