期刊文献+
共找到6,566篇文章
< 1 2 250 >
每页显示 20 50 100
Increasing realism in modelling energy losses in railway vehicles and their impact to energy-efficient train control
1
作者 Michael Nold Francesco Corman 《Railway Engineering Science》 EI 2024年第3期257-285,共29页
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi... The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases. 展开更多
关键词 train trajectory optimization energy-efficient train control(EETC) Dynamic efficiency Power losses in railway vehicles
下载PDF
Disturbance rejection tube model predictive levitation control of maglev trains
2
作者 Yirui Han Xiuming Yao Yu Yang 《High-Speed Railway》 2024年第1期57-63,共7页
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa... Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy. 展开更多
关键词 Maglev trains Levitation system Constrained control Disturbance observer Model predictive control
下载PDF
Virtually coupled train set control subject to space-time separation:A distributed economic MPC approach with emergency braking configuration
3
作者 Xiaolin Luo Tao Tang +1 位作者 Le Wang Hongjie Liu 《High-Speed Railway》 2024年第3期143-152,共10页
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula... The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches. 展开更多
关键词 Virtually coupled train set Space-time separation Economic model predictive control Distributed model predictive control Emergency braking configuration
下载PDF
Passive activity enhances residual control ability in patients with complete spinal cord injury
4
作者 Yanqing Xiao Mingming Gao +6 位作者 Zejia He Jia Zheng Hongming Bai Jia-Sheng Rao Guiyun Song Wei Song Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2337-2347,共11页
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these... Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury. 展开更多
关键词 complete spinal cord injury cycle training epidural electrical stimulation motor training passive activity physiological state spinal cord circuit surface electromyography volitional control task
下载PDF
Analyzing the Combination Effects of Repetitive Transcranial Magnetic Stimulation and Motor Control Training on Balance Function and Gait in Patients with Stroke-Induced Hemiplegia
5
作者 Xiaoqing Ma Zhen Ma +2 位作者 Ye Xu Meng Han Hui Yan 《Proceedings of Anticancer Research》 2024年第1期54-60,共7页
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala... Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation. 展开更多
关键词 Stroke-induced hemiplegia Repetitive transcranial magnetic stimulation Motor control training Balance function GAIT
下载PDF
Optimal energy-efficient power control for cognitive radio based on static and dynamic features of primary users
6
作者 Ge Wendong Ji Hong Si Pengbo 《High Technology Letters》 EI CAS 2011年第4期350-353,共4页
In this paper, the energy-efficient power control problem in cognitive radio (CR) networks is studied not only to provide energy-efficient transmission, but also to guarantee the normal operation of primary users (... In this paper, the energy-efficient power control problem in cognitive radio (CR) networks is studied not only to provide energy-efficient transmission, but also to guarantee the normal operation of primary users (PUs). Moreover, the static energy-efficient power control (SEPC) algorithm is proposed in static scenario to maximize the capacity of secondary users (SUs) and to reduce the power consumption according to the interference from PU to SU. Furthermore, based on the analysis of PU's dynamic feature with Markov chain and SEPC algorithm,the dynamic energy-efficient power control (DEPC) algorithm is proposed taking into account the probability of detection and false alarm caused by sensing errors. Extensive simulation results show that the performance of the proposed algorithms is significantly improved compared with the existing algorithm. 展开更多
关键词 cognitive radio(CR) power control energy-efficient MARKOV false alarm
下载PDF
Development of an Enhanced Self-Tuning RBF-PID Controller for Achieving Higher Energy-Efficient Process Control
7
作者 Zu Wang Liang Xia +4 位作者 John Kaiser Calautit Xinru Wang Danwei Jiang Song Pan Jinshun Wu 《Journal of Building Construction and Planning Research》 2021年第4期272-291,共20页
Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural n... Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process. 展开更多
关键词 energy-efficient control RBF Neural Network Enhanced Self-Tuning PID Experimental Validation
下载PDF
Antiskid Control of Railway Train Braking Based on Adhesion Creep Behavior 被引量:7
8
作者 ZUO Jianyong CHEN Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期543-549,共7页
In modern trains wheelset skidding leads to the deterioration of braking behavior,the degradation of comfort,as well as a boost in system hazards.Because of the nonlinearity and unknown characteristics of wheelset adh... In modern trains wheelset skidding leads to the deterioration of braking behavior,the degradation of comfort,as well as a boost in system hazards.Because of the nonlinearity and unknown characteristics of wheelset adhesion,simplifications are widely adopted in the modeling process of conventional antiskid controllers.Therefore,conventional antiskid controllers usually cannot perform satisfactorily.In this paper,systematic computer simulation and field tests for railway antiskid control system are introduced.The operating principal of antiskid control system is explained,which is fundamental to the simulation of antiskid brakes,and the simulation model is introduced,which incorporates both the adhesion creep curve and a pneumatic submodel of antiskid control system.In addition,the characteristics of adhesion curves and the simulation target are also provided.Using DHSplus,the pneumatic submodel is created to analyze the performance of the different control strategies of antiskid valves.Then the system simulation is realized by combining the kinematical characteristics of railway trains and the pneumatic submodel.The simulation is performed iteratively to obtain the optimized design of the antiskid control system.The design result is incorporated in the hardware design of the antiskid control system and is evaluated in the field tests in Shanghai Subway Line 1.Judging by the antiskid efficiency,the antiskid braking performance observed in the field tests shows the superiority of the optimized design.Therefore,the proposed simulation method,especially in view of its ease of application,appears to be a useful one for designing railway antiskid control systems. 展开更多
关键词 antiskid control adhesion creep railway train braking system simulation.
下载PDF
Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability 被引量:6
9
作者 高士根 董海荣 +3 位作者 宁滨 Roberts Clive 陈磊 孙绪彬 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期161-170,共10页
This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the ... This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the information of proximal(preceding and following) trains is used in the controller design. Based on available proximal information(prox-info) of location, speed, and acceleration, a direct adaptive control is designed to maintain the tracking interval at the minimum safe distance. Based on available prox-info of location, an observer-based adaptive control is designed to achieve the same target, which alleviates the requirements of equipped sensors to measure prox-info of speed and acceleration. The developed schemes are capable of on-line estimating of the unknown system parameters and stabilizing the closed-loop system, the string stability of train platoon is guaranteed on the basis of Lyapunov stability theorem. Numerical simulation results are presented to verify the effectiveness of the proposed control laws. 展开更多
关键词 train platoon string stability cooperative adaptive control efficient utility
下载PDF
Optimal Energy-Efficient Transmission for Hybrid Spectrum Sharing in Cooperative Cognitive Radio Networks 被引量:9
10
作者 Linna Hu Rui Shi +3 位作者 Minghe Mao Zhiyu Chen Hongxi Zhou Weiliang Li 《China Communications》 SCIE CSCD 2019年第6期150-161,共12页
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste... In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network. 展开更多
关键词 cognitive radio networks COOPERATIVE SPECTRUM SENSING energy-efficiENCY HYBRID SPECTRUM sharing power control SENSING time optimization
下载PDF
High-Speed Trains Automatic Operation with Protection Constraints: A Resilient Nonlinear Gain-based Feedback Control Approach 被引量:2
11
作者 Shigen Gao Yuhan Hou +2 位作者 Hairong Dong Sebastian Stichel Bin Ning 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期992-999,共8页
This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of gua... This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches. 展开更多
关键词 AUTOMATIC train operation high-speed train nonlinear GAIN feedback PROTECTION CONStrainT resilient control
下载PDF
Optimal control strategy for energy saving in trains under the four-aspect fixed autoblock system 被引量:3
12
作者 Qiheng LU Xiaoyun FENG 《Journal of Modern Transportation》 2011年第2期82-87,共6页
This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing t... This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality. 展开更多
关键词 leading train following train four-aspect fixed autoblock system optimal control strategy of energysaving train tracking dynamic speed constraints genetic algorithm
下载PDF
DIRECT FUZZY NEURAL CONTROL FOR TRAIN TRAVELING PROCESS 被引量:2
13
作者 Wang, Jing Cai, Zixing Jia, Limin 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期147-151,共5页
DIRECTFUZZYNEURALCONTROLFORTRAINTRAVELINGPROCESS①WangJing,CaiZixing,JiaLiminResearchCenterforIntelligen... DIRECTFUZZYNEURALCONTROLFORTRAINTRAVELINGPROCESS①WangJing,CaiZixing,JiaLiminResearchCenterforIntelligentControl,CentralS... 展开更多
关键词 ATO(automatic train operation) FUZZY controller train TRAVELING PROCESS PROCESS PARTITION
下载PDF
Position Control Optimization of Aerodynamic Brake Device for High-speed Trains 被引量:2
14
作者 ZUO Jianyong LUO Zhuojun CHEN Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期287-295,共9页
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentio... The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control. 展开更多
关键词 high-speed train aerodynamic brake HYDRAULIC position control optimization.
下载PDF
Coupling vibration analysis of high-speed maglev train-viaduct systems with control loop failure 被引量:4
15
作者 GUO Wei CHEN Xue-yuan +7 位作者 YE Yi-tao HU Yao LUO Yi-kai SHAO Ping HUANG Ren-qiang WANG Xu-yixin GUO Zhen TAN Sui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2771-2790,共20页
The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train col... The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails. 展开更多
关键词 high-speed maglev train control loop failure coupling vibration maglev control
下载PDF
Adaptive Robust Control for a Lower Limbs Rehabilitation Robot Running Under Passive Training Mode 被引量:2
16
作者 Xiaolong Chen Han Zhao +1 位作者 Shengchao Zhen Hao Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期493-502,共10页
This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling... This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling error, initial condition deviation, friction force and other unknown external disturbances always exist in a LLRR system. So, it is necessary to consider the uncertainties in the unilateral man-machine dynamical model of the LLRR we described. In the dynamical model, uncertainties are(possibly fast) time-varying and bounded. However, the bounds are unknown. Based on the dynamical model, we design an adaptive robust control with an adaptive law that is leakagetype based and on the framework of Udwadia-Kalaba theory to compensate for the uncertainties and to realize tracking control of the LLRR. Furthermore, the effectiveness of designed control is shown with numerical simulations. 展开更多
关键词 Adaptive robust control LOWER LIMBS REHABILITATION robot mechanical system PASSIVE trainING UNCERTAINTIES
下载PDF
Effect of Combined Low-frequency Repetitive Transcranial Magnetic Stimulation and Virtual Reality Training on Upper Limb Function in Subacute Stroke:a Double-blind Randomized Controlled Trail 被引量:15
17
作者 郑婵娟 廖维靖 夏文广 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第2期248-254,共7页
The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 11... The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke. 展开更多
关键词 training transcranial rehabilitation controlled assessed stimulation endpoint confidence repetitive subacute
下载PDF
Coordinated control strategy for robotic-assisted gait training with partial body weight support 被引量:6
18
作者 秦涛 张立勋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2954-2962,共9页
Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w... Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging. 展开更多
关键词 robotic-assisted gait training gait training robot (GTR) partial body weight support (PBWS) center of gravity (COG) coordinated control strategy ground reaction force (GRF)
下载PDF
A Distributionally Robust Optimization Method for Passenger Flow Control Strategy and Train Scheduling on an Urban Rail Transit Line 被引量:4
19
作者 Yahan Lu Lixing Yang +4 位作者 Kai Yang Ziyou Gao Housheng Zhou Fanting Meng Jianguo Qi 《Engineering》 SCIE EI CAS 2022年第5期202-220,共19页
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio... Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches. 展开更多
关键词 Passenger flow control train scheduling Distributionally robust optimization Stochastic and dynamic passenger demand Ambiguity set
下载PDF
Effect of suspension training on neuromuscular function, postural control, and knee kinematics in anterior cruciate ligament reconstruction patients 被引量:4
20
作者 Dong-Dong Huang Liang-Hua Chen +4 位作者 Zhe Yu Quan-Jun Chen Jie-Nuan Lai Hai-Hong Li Gang Liu 《World Journal of Clinical Cases》 SCIE 2021年第10期2247-2258,共12页
BACKGROUND Suspension training(SET)is a method of neuromuscular training that enables the body to carry out active training under unstable support through a suspension therapy system.However,there have been few report... BACKGROUND Suspension training(SET)is a method of neuromuscular training that enables the body to carry out active training under unstable support through a suspension therapy system.However,there have been few reports in the literature on the application of SET to anterior cruciate ligament reconstruction(ACLR)patients.It is not clear what aspects of the patient's function are improved after SET.AIM To investigate the effect of SET on the neuromuscular function,postural control,and knee kinematics of patients after ACLR surgery.METHODS Forty participants were randomized to an SET group or a control group.The SET group subjects participated in a SET protocol over 6 wk.The control group subjects participated in a traditional training protocol over 6 wk.Isokinetic muscle strength of the quadriceps and hamstrings,static and dynamic posture stability test,and relative translation of the injured knee were assessed before and after training.RESULTS The relative peak torque of the quadriceps and hamstrings in both groups increased significantly(P<0.001),and the SET group increased by a higher percentage than those in the control group(quadriceps:P=0.004;hamstrings:P=0.011).After training,both groups showed significant improvements in static and dynamic posture stability(P<0.01),and the SET group had a greater change than the control group(P<0.05).No significant improvement on the relative translation of the injured knee was observed after training in either group(P>0.05).CONCLUSION Our findings show that SET promotes great responses in quadriceps and hamstring muscle strength and balance function in ACLR patients. 展开更多
关键词 Anterior cruciate ligament reconstruction Suspension training Neuromuscular function Postural control Knee kinematics REHABILITATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部