期刊文献+
共找到1,807篇文章
< 1 2 91 >
每页显示 20 50 100
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
1
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
2
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
3
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
Deep Reinforcement Learning Solves Job-shop Scheduling Problems
4
作者 Anjiang Cai Yangfan Yu Manman Zhao 《Instrumentation》 2024年第1期88-100,共13页
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo... To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time. 展开更多
关键词 job shop scheduling problems deep reinforcement learning state characteristics policy network
下载PDF
SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM 被引量:13
5
作者 乔兵 孙志峻 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期108-112,共5页
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper... The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm. 展开更多
关键词 flexible job shop gene tic algorithm job shop scheduling
下载PDF
Infeasibility test algorithm and fast repair algorithm of job shop scheduling problem
6
作者 孙璐 黄志 +1 位作者 张惠民 顾文钧 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期88-91,共4页
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori... To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility. 展开更多
关键词 INFEASIBILITY job shop scheduling repairing algorithm
下载PDF
具有模糊加工时间的Flexible Job-Shop Scheduling问题的研究 被引量:1
7
作者 卢冰原 吴义生 柳雨霁 《价值工程》 2007年第12期105-107,共3页
采用梯形模糊数来表征柔性生产系统中的时间参数,并在此基础上对具有模糊加工时间的柔性作业车间最小化制造跨度调度问题进行了描述。然后给出了基于粒子群优化的柔性作业车间调度模型。最后通过实例验证了模型的有效性。
关键词 模糊理论 柔性作业车间调度 粒子群优化
下载PDF
Project Scheduling问题和Job-Shop问题的神经网络解 被引量:1
8
作者 章烔民 吴文娟 陶增乐 《计算机应用与软件》 CSCD 1998年第2期21-28,共8页
Project Scheduling问题和Job-Shop问题是著名的NP难题。本文用神经网络方法去解这两个问题,软件模拟结果是令人满意的。这种方法也为解一大类组合优化问题提供了一个新的途径。
关键词 job-shop问题 神经网络 优化问题
下载PDF
A Modi ed Iterated Greedy Algorithm for Flexible Job Shop Scheduling Problem 被引量:8
9
作者 Ghiath Al Aqel Xinyu Li Liang Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第2期157-167,共11页
The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are ca... The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them di cult to code and not easy to reproduce. This paper proposes a modified iterated greedy(IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an e ective method that is also easy to apply and consumes less CPU time in solving the FJSP problem. 展开更多
关键词 ITERATED GREEDY Flexible job shop scheduling problem DISPATCHING RULES
下载PDF
Modified bottleneck-based heuristic for large-scale job-shop scheduling problems with a single bottleneck 被引量:21
10
作者 Zuo Yan Gu Hanyu Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期556-565,共10页
A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. I... A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems. 展开更多
关键词 job shop scheduling problem BOTTLENECK shifting bottleneck procedure.
下载PDF
A Review on Swarm Intelligence and Evolutionary Algorithms for Solving Flexible Job Shop Scheduling Problems 被引量:37
11
作者 Kaizhou Gao Zhiguang Cao +3 位作者 Le Zhang Zhenghua Chen Yuyan Han Quanke Pan 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第4期904-916,共13页
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,... Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions. 展开更多
关键词 EVOLUTIONARY algorithm flexible job shop scheduling REVIEW SWARM INTELLIGENCE
下载PDF
Emergency Local Searching Approach for Job Shop Scheduling 被引量:4
12
作者 ZHAO Ning CHEN Siyu DU Yanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期918-927,共10页
Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not nece... Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not necessary.In this situation,the existing method of local search is not fast enough.This paper presents an emergency local search(ELS) approach which can reach feasible and nearly optimal solution in limited search time.The ELS approach is desirable for the aforementioned emergency situations where search time is limited and a nearly optimal solution is sufficient,which consists of three phases.Firstly,in order to reach a feasible and nearly optimal solution,infeasible solutions are repaired and a repair technique named group repair is proposed.Secondly,in order to save time,the amount of local search moves need to be reduced and this is achieved by a quickly search method named critical path search(CPS).Finally,CPS sometimes stops at a solution far from the optimal one.In order to jump out the search dilemma of CPS,a jump technique based on critical part is used to improve CPS.Furthermore,the schedule system based on ELS has been developed and experiments based on this system completed on the computer of Intel Pentium(R) 2.93 GHz.The experimental result shows that the optimal solutions of small scale instances are reached in 2 s,and the nearly optimal solutions of large scale instances are reached in 4 s.The proposed ELS approach can stably reach nearly optimal solutions with manageable search time,and can be applied on some emergency situations. 展开更多
关键词 emergency local search job shop scheduling problem schedulE critical path critical constraint part
下载PDF
Clonal Selection Based Memetic Algorithm for Job Shop Scheduling Problems 被引量:4
13
作者 Jin-hui Yang Liang Sun +2 位作者 Heow Pueh Lee Yun Qian Yan-chun Liang 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第2期111-119,共9页
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp... A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm. 展开更多
关键词 job shop scheduling problem clonal selection algorithm simulated annealing global search local search
下载PDF
Job shop scheduling problem with alternative machines using genetic algorithms 被引量:10
14
作者 I.A.Chaudhry 《Journal of Central South University》 SCIE EI CAS 2012年第5期1322-1333,共12页
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther... The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines. 展开更多
关键词 alternative machine genetic algorithm (GA) job shop scheduling SPREADSHEET
下载PDF
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:8
15
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
下载PDF
NEW NONSTANDARD JOB SHOP SCHEDULING ALGORITHM 被引量:10
16
作者 XIE Zhiqiang YE Guangjie +1 位作者 ZHANG Dali TAN Guangyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期97-100,共4页
Considering the complex constraint between operations in nonstandard job shop scheduling problem (NJSSP), critical path of job manufacturing tree is determined according to priority scheduling function constructed. ... Considering the complex constraint between operations in nonstandard job shop scheduling problem (NJSSP), critical path of job manufacturing tree is determined according to priority scheduling function constructed. Operations are divided into dependent operations and independent operations with the idea of subsection, and corresponding scheduling strategy is put forward according to operation characteristic in the segment and the complementarities of identical function machines. Forward greedy rule is adopted mainly for dependent operations to make operations arranged in the right position of machine selected, then each operation can be processed as early as possible, and the total processing time of job can be shortened as much as possible. For independent operations optimum scheduling rule is adopted mainly, the inserting position of operations will be determined according to the gap that the processing time of operations is subtracted from idle time of machine, and the operation will be inserted in the position with minimal gap. Experiments show, under the same conditions, the result that operations are scheduled according to the object function constructed, and the scheduling strategy adopted is better than the result that operations are scheduled according to efficiency scheduling algorithm. 展开更多
关键词 Nonstandard job shop scheduling Priority scheduling function Subsection Forward greedy rule Optimum scheduling rule
下载PDF
Energy-efficient Approach to Minimizing the Energy Consumption in An Extended Job-shop Scheduling Problem 被引量:20
17
作者 TANG Dunbing DAI Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1048-1055,共8页
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ... The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem. 展开更多
关键词 energy consumption MAKESPAN production planning and scheduling job-shop floor different cutting speeds
下载PDF
A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-ShopScheduling Problem 被引量:5
18
作者 Budi Santosa Muhammad Arif Budiman Stefanus Eko Wiratno 《Journal of Intelligent Learning Systems and Applications》 2011年第3期171-180,共10页
No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Seve... No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods. 展开更多
关键词 NO-WAIT job shop scheduling Cross ENTROPY GENETIC Algorithm Combinatorial Optimization
下载PDF
Research on Flexible Job Shop Scheduling Optimization Based on Segmented AGV 被引量:2
19
作者 Qinhui Liu Nengjian Wang +3 位作者 Jiang Li Tongtong Ma Fapeng Li Zhijie Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2073-2091,共19页
As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources... As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases. 展开更多
关键词 Segmented AGV flexible job shop improved genetic algorithm scheduling optimization
下载PDF
Deep Reinforcement Learning-Based Job Shop Scheduling of Smart Manufacturing 被引量:2
20
作者 Eman K.Elsayed Asmaa K.Elsayed Kamal A.Eldahshan 《Computers, Materials & Continua》 SCIE EI 2022年第12期5103-5120,共18页
Industry 4.0 production environments and smart manufacturing systems integrate both the physical and decision-making aspects of manufacturing operations into autonomous and decentralized systems.One of the key aspects... Industry 4.0 production environments and smart manufacturing systems integrate both the physical and decision-making aspects of manufacturing operations into autonomous and decentralized systems.One of the key aspects of these systems is a production planning,specifically,Scheduling operations on the machines.To cope with this problem,this paper proposed a Deep Reinforcement Learning with an Actor-Critic algorithm(DRLAC).We model the Job-Shop Scheduling Problem(JSSP)as a Markov Decision Process(MDP),represent the state of a JSSP as simple Graph Isomorphism Networks(GIN)to extract nodes features during scheduling,and derive the policy of optimal scheduling which guides the included node features to the best next action of schedule.In addition,we adopt the Actor-Critic(AC)network’s training algorithm-based reinforcement learning for achieving the optimal policy of the scheduling.To prove the proposed model’s effectiveness,first,we will present a case study that illustrated a conflict between two job scheduling,secondly,we will apply the proposed model to a known benchmark dataset and compare the results with the traditional scheduling methods and trending approaches.The numerical results indicate that the proposed model can be adaptive with real-time production scheduling,where the average percentage deviation(APD)of our model achieved values between 0.009 and 0.21 comparedwith heuristic methods and values between 0.014 and 0.18 compared with other trending approaches. 展开更多
关键词 Reinforcement learning job shop scheduling graphical isomorphism network actor-critic networks
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部