In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab...In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.展开更多
The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content af...The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content affect compaction quality.The study measures the changes in UPV across dry density and compaction characteristics.The compacted specimens exhibit distinct microstructures and mechanical properties along the dry and wet sides of the compaction curve,primarily influenced by internal water molecules.The maximum dry density exhibits a positive correlation with the rock content,while the optimal moisture content demonstrates an inverse relationship.As the rock content increases,the relative error of UPV measurement rises.The UPV follows a hump-shaped pattern with the initial moisture content.Three intelligent models are established to forecast dry density.The measure of UPV and PSO-BP-NN model quickly assesses compaction quality.展开更多
Pulsed ultrasonic field was employed in the melt of the AZ80 magnesium alloy.The effects of pulsed ultrasonic field on microstructure and mechanical properties of AZ80 magnesium alloy were investigated.The results sho...Pulsed ultrasonic field was employed in the melt of the AZ80 magnesium alloy.The effects of pulsed ultrasonic field on microstructure and mechanical properties of AZ80 magnesium alloy were investigated.The results show that the as-cast microstructure of the AZ80 alloy with pulsed ultrasonic treatment is significantly changed.Pulsed ultrasonic field significantly decreases the grain size,changes the morphologies of theβ-Mg_(17)Al_(12) phases and reduces their area fraction.It is found that pulsc width of ultrasonic plays an important role on the microstructure formation of AZ80 alloy.With increasing pulse width,grains become finer and more uniform.In the range of experimental parameters,the optimum pulse width for melt treatment process is found to be 210μs.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy with pulsed ultrasonic treatment are much higher than those of AZ80 alloy without ultrasonic field.展开更多
Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and wat...Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and water has been demonstrated. The experiment results are in good agreemerit with literature values.展开更多
A focused ultrasonic transducer used for biomedical purposes with a fundamental frequency of 10MHz and a pulse width of one and a half periods is described in this paper. Its physical properties are given including (1...A focused ultrasonic transducer used for biomedical purposes with a fundamental frequency of 10MHz and a pulse width of one and a half periods is described in this paper. Its physical properties are given including (1) focused acoustic field recorded by an optical means, (2) electric waveform for triggering the transducer and the corresponding waveform of the wave received by another transducer, and (3) result of tests on a sample object.展开更多
The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse elect...The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.展开更多
Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile prop...Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile properties,the correlation between ultrasonic pulse velocity and tensile properties,and characteristic parameters of microcracks.The experimental results show that obvious strain hardening behavior can be found in FA-EGC at different curing ages.With the increase of curing age,the tensile strength increases,the tensile strain decreases and the toughness becomes worse.The UPV of FA-EGC increases with curing age,and a strong correlation can be found between tensile strength and UPV.With the increase of curing age,the average crack width of FA-EGC decreases and the total number of cracks increases.This is because the strength of geopolymer increases fast at early age,thus the later strength development of FA-EGC tend to be stable.At the same time,the bond strength between fiber and matrix,and the friction of fiber/matrix interface continue to increase with curing age,thus the bridging effect of fiber is gradually strengthened.In conclusion,the increase of curing age is beneficial to the development of tensile properties of FA-EGC.展开更多
The purpose of this paper is to develop a prediction model of WGCLSM (waste LCD (liquid crystal display) glass controlled low strength materials) concrete, the relationship between UPV (ultrasonic pulse velocity...The purpose of this paper is to develop a prediction model of WGCLSM (waste LCD (liquid crystal display) glass controlled low strength materials) concrete, the relationship between UPV (ultrasonic pulse velocity) and compressive strength, UPV-strength model. The power function was used to perform the nonlinear-multivariate regression analysis of UPV with water-binder ratio (w/b), curing age (t) and waste glass content (G) in our previous study. Test results show that the compressive strength increases with UPV and approach to a linear relationship. Thus, the UPV-strength model was established by linear-multivariate regression analysis and the compressive strength evaluated by ultrasonic pulse velocity. The calculated results are in accordance with the laboratory measured data ultrasonic pulse velocity and compressive strength. In addition, the statistical analysis shows that the coefficient of determination R2 and the MAPE (mean absolute percentage error) were from 0.916 to 0.951 and 12.6% to 15.1% for the compressive strength, respectively. The proposed models are highly accurate in predicting the compressive and ultrasonic pulse velocity of WGCLSM concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.展开更多
The fly ash based geopolymer has emerged as a capable and sustainable binder material in construction industry.Ultrasonic pulse velocity(UPV)method is a non-destructive technique for investigating the mechanical perfo...The fly ash based geopolymer has emerged as a capable and sustainable binder material in construction industry.Ultrasonic pulse velocity(UPV)method is a non-destructive technique for investigating the mechanical performance of concrete.Experimental investigation was performed for studying the effect of NaOH Molarity,Na2SiO3/NaOH and curing temperature on the ultrasonic pulse velocity of geopolymer mortar.Experiments were designed based on central composite design(CCD)technique of response surface methodology(RSM).Statistical model was developed and statistically validated and found significant as the difference between adjustable R-squared and predicted R-squared less than 0.2.Finally,the optimized mix proportion was assessed for maximized value of UPV.Experimental validation on the optimized mix reveals the close agreement between experimental and predicted values of UPV with significance level of more than 95%.The proposed technique improves the yield,the reliability of the product and the processes.展开更多
Pores,microcracks and density of plasma sprayed Cr2O3 coatings before and after high-intensity pulsed ion beam(HIPIB) irradiation were investigated using the ultrasonic reflection coefficient spectroscopy(URCS).The UR...Pores,microcracks and density of plasma sprayed Cr2O3 coatings before and after high-intensity pulsed ion beam(HIPIB) irradiation were investigated using the ultrasonic reflection coefficient spectroscopy(URCS).The URCS was analyzed based on an acoustic transmission model for the multi-layered structure.The longitudinal velocity in the coatings was calculated from the experimental URCS,and the attenuation coefficient expression was deduced by comparing the experimental and numerical fitting amplitude spectral lines.The longitudinal velocity of as-sprayed Cr2O3 coating is 2 002 m/s,and increases to 2 099 and 2 148 m/s after being irradiated by HIPIB with 1 and 5 shots.Correspondingly,the factor A changes from 0.046 to 0.026 and 0.020 and n from 1.702 to 1.658 and 1.649 in the attenuation coefficient expression of α=Af n.It is observed that the surface morphology of Cr2O3 coatings changes from rough and porous to smooth and uniform with the increase of shot number,which accords with the ultrasonic analyses reasonably.The URCS seems to provide a convenient and nondestructive method to characterize surface modification of the plasma sprayed coatings.展开更多
To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic s...To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.展开更多
The focal hepatic lesion caused by local injection of absolute alcohol in rats was evaluated with ultrasonic contrast agent and pathologic examination. Twenty adult Wistar rats weighing about 200 g were injected with ...The focal hepatic lesion caused by local injection of absolute alcohol in rats was evaluated with ultrasonic contrast agent and pathologic examination. Twenty adult Wistar rats weighing about 200 g were injected with absolute alcohol (0. 05-0. 1 mL each one) on the exterior left lobe of the liver under the monitoring of ultrasound. Pulse inversion harmonic imaging was used to evaluate the focal lesion after bolus injection of ultrasonic contrast agent (0. 05 mL/200 g) through caudal vein. Seven days later, the focal lesion was studied again as before. The exterior left lobe of liver with focal lesion was incised and underwent pathologic examination. The results showed that all of the focal lesions could be defined clearly after bolus injection of the ultrasonic contrast agent under the mode of pulse inversion harmonic imaging. There was good correlation between the size of the focal lesion measured by ultrasound on the 7th day after the "ablation" under the mode of pulse inversion harmonic imaging and that gotten by pathologic examination (P=0.39). The focus size measured by ultrasound right after the ablation was larger than that gotten by pathologic examination (P=0. 002). It was concluded that ultrasonic contrast agent plus pulse inversion harmonic imaging could be used to assess the size of the focal hepatic lesion caused by local injection of absolute alcohol in rats.展开更多
An extensive study of the thermal properties of Lithium Sodium Sulphate Hexa hydrate (LSSW) single crystal, with Trigonal structure, has been carried out using ultrasonic Pulse Echo Overlap (PEO) technique, Differenti...An extensive study of the thermal properties of Lithium Sodium Sulphate Hexa hydrate (LSSW) single crystal, with Trigonal structure, has been carried out using ultrasonic Pulse Echo Overlap (PEO) technique, Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA). The temperature variation of elastic constants of LiNa3(SO4)2·6H2O single crystal have been reported for the first time. The second order elastic stiffness constants C11,?C33, C44, along the various directions in the crystal have been determined in the temperature range 300 - 330 K. The change in velocity with temperature with respect to the room temperature value has been measured using PEO technique. Significant anomalies were observed in C11?and C33?at 316 K. The elastic constant C12?has shown no variation in the temperature range 300 - 319 K. A minor deviation for C44?at 305 K following a parabolic change has been observed. The minor anomalies observed in the elastic constants of LSSW may be due to its dehydration of water of crystallization in the range 304 - 319 K. DTA studies showed an appreciable endothermic change in the range 309 K-369.79 K. TGA curve exhibited a decrease in weight of 1.687 mg in the temperature range 304 K-360 K. The minor anomalies observed in the elastic constants of LSSW may be due to loosing of its water of crystallization in the range 309 - 319 K. On loosing water there will not be any change in chemical structure but there will be physical change associated with loosing of water molecule.展开更多
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system...In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.展开更多
Objective: The ultrasonic findings of papillary thyroid carcinoma were analyzed by acoustic power pulse imaging, and the relationship between the expression of osteopontin and the expression of osteopontin was analyze...Objective: The ultrasonic findings of papillary thyroid carcinoma were analyzed by acoustic power pulse imaging, and the relationship between the expression of osteopontin and the expression of osteopontin was analyzed. Methods: Using color Doppler ultrasound in patients with lesions, morphology, internal echo, calcification and blood flow of the situation, and then switch to ARFI VTI mode and VTQ mode, VTI were measured with two-dimensional area and area ratio of VTQ mode SWV;osteopontin expression was detected in two groups of patients with thyroid tissues. Analysis of difference between the two the group index by using SPSS18.0 software, Pearson linear correlation method is used to analyze the area ratio and SWV value of thyroid tissue expression correlated with OPN. Results: The shape of papillary thyroid carcinoma nodules showed that the boundary was irregular and the shape of the nodules was burr. The shape of benign nodules was more than 1 with low echo in the interior. The shape of benign nodules showed clear boundary and middle hyperechoic in the interior. No calcification occurred in most lesions in that observation group, the area ratio in VTI mode is obviously higher than that of the control group, the difference was statistically significant (T=7.313, P=0.000), the SWV value in the VTQ model of the observation group was also significantly higher than that in the control group, the difference was statistically significant (t=43.334, P=0.000). The expression of OPNmRNA in the observation group was significantly higher than that of the control group , and the difference was statistically significant (t=8.894, P=0.000). Pearson linear correlation analysis showed that there was a significant positive correlation between OPNmRNA expression in papillary thyroid carcinoma and area ratio in VTI model and SWV course in VTQ model (r=0.235, 0.264;P<0.05). Conclusion: It is important for the diagnosis of papillary thyroid carcinoma to use the technique of acoustic power pulse imaging combined with the detection of OPNmRNA expression. It can be used as a new method for the diagnosis and prognosis of papillary thyroid carcinoma.展开更多
By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found...By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found that the sonic velocity of the blends decreased as thetemperature increased, but attenuation coefficient increased and possessed a peak value. Largervelocity and smaller attenuation coefficient(α)can be obtained from perfect crosslinking networkstructures of pure DGEBA cured with phthalic anhydride(PA). As for cured DGEBA/PEO blendsystems,sonic velocity decreased as a function of PEO concentration,but attenuation coefficient(α) increased.展开更多
A novel ultrafast-convert hybrid pulse square-wave variable polarity arc welding power source was developed. The variable polarity current which crossed zero with no dead time possessed the ultrafast converting speed ...A novel ultrafast-convert hybrid pulse square-wave variable polarity arc welding power source was developed. The variable polarity current which crossed zero with no dead time possessed the ultrafast converting speed and the series of ultrasonic pulse current were superimposed in the positive polarity current duration. A high-efficiency hybrid pulse variable polarity gas tungsten arc welding (HPVP-GTAW)process for aluminum alloys was achieved. With X-ray inspection, microstructure analysis, tensile tests and scanning electron microscopy (SEM) for fracture surface, the square butt welding cbaracteristics of 5A06, 2A14 and 2219 aluminum alloys were tested, respectively. Experimental results show that microstructure and mechanical properties of these aluminum alloy welded joints are influenced significantly by the introduction of ultrasonic pulse current. The weld quality is improved predominantly by the novel HPVP-GTA W process.展开更多
The pulsed power ultrasonic-assisted gas metal arc welding(PU-GMAW)is a new development hybrid welding method.The influences of the pulsed power ultrasonic on the microstructure evolution of the welded joint of Al-Cu ...The pulsed power ultrasonic-assisted gas metal arc welding(PU-GMAW)is a new development hybrid welding method.The influences of the pulsed power ultrasonic on the microstructure evolution of the welded joint of Al-Cu alloy were investigated by using scanning electron microscopy,transmission electron microscope and electron back scattering diffraction.The results showed that the efficient heat input in the PU-GMAW was increased by above 100%compared with the traditional GMAW.The grain and eutectic of the PU-GMAW weld seam were refined compared with that of the GMAW.Cavitation and acoustic streaming induced the dendrite fragmentation(α-Al)and heterogeneous nucleation,which were the main reasons for the grain refinement.The microhardness of the PU-GMAW welded joint was improved compared with that of the GMAW owing to the change of the eutectic and grain.展开更多
The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive weld...The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52208299,and 52108260)the 2021 Tencent XPLORER PRIZE。
文摘In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.
基金supported by the National Natural Science Foundation of China (Grant Nos.52038005 and 52278342)Natural Science Foundation of Tianjin,China (Grant No.23JCJQJC00160).
文摘The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content affect compaction quality.The study measures the changes in UPV across dry density and compaction characteristics.The compacted specimens exhibit distinct microstructures and mechanical properties along the dry and wet sides of the compaction curve,primarily influenced by internal water molecules.The maximum dry density exhibits a positive correlation with the rock content,while the optimal moisture content demonstrates an inverse relationship.As the rock content increases,the relative error of UPV measurement rises.The UPV follows a hump-shaped pattern with the initial moisture content.Three intelligent models are established to forecast dry density.The measure of UPV and PSO-BP-NN model quickly assesses compaction quality.
基金Projects(2007CB6137012007CB613702)supported by the National Basic Research Program of China+2 种基金Project(50574028)supported bythe National Natural Science Foundation of ChinaProject(2006BAE04B01-5)supported by the National Key Technology R&D Programof ChinaProject(B07015)supported by the 111 Project of China
文摘Pulsed ultrasonic field was employed in the melt of the AZ80 magnesium alloy.The effects of pulsed ultrasonic field on microstructure and mechanical properties of AZ80 magnesium alloy were investigated.The results show that the as-cast microstructure of the AZ80 alloy with pulsed ultrasonic treatment is significantly changed.Pulsed ultrasonic field significantly decreases the grain size,changes the morphologies of theβ-Mg_(17)Al_(12) phases and reduces their area fraction.It is found that pulsc width of ultrasonic plays an important role on the microstructure formation of AZ80 alloy.With increasing pulse width,grains become finer and more uniform.In the range of experimental parameters,the optimum pulse width for melt treatment process is found to be 210μs.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy with pulsed ultrasonic treatment are much higher than those of AZ80 alloy without ultrasonic field.
文摘Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and water has been demonstrated. The experiment results are in good agreemerit with literature values.
文摘A focused ultrasonic transducer used for biomedical purposes with a fundamental frequency of 10MHz and a pulse width of one and a half periods is described in this paper. Its physical properties are given including (1) focused acoustic field recorded by an optical means, (2) electric waveform for triggering the transducer and the corresponding waveform of the wave received by another transducer, and (3) result of tests on a sample object.
基金Project(51275116)supported by the National Natural Science Foundation of ChinaProject(2012ZE77010)supported by the Aero Science Foundation of ChinaProject(LBH-Q11090)supported by the Postdoctoral Science Research Development Foundation of Heilongjiang Province,China
文摘The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.
基金Funded by the National Natural Science Foundation of China(Nos.52178241 and 52242807)the Fundamental Research Funds for the Central Universities(No.64522120220599 and 2023-2-YB-20)the National Key Research and Development Program of China during the Fourteenth Five-Year Plan Period(Nos.2021YFB3802001 and 2019YFE0112600)。
文摘Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile properties,the correlation between ultrasonic pulse velocity and tensile properties,and characteristic parameters of microcracks.The experimental results show that obvious strain hardening behavior can be found in FA-EGC at different curing ages.With the increase of curing age,the tensile strength increases,the tensile strain decreases and the toughness becomes worse.The UPV of FA-EGC increases with curing age,and a strong correlation can be found between tensile strength and UPV.With the increase of curing age,the average crack width of FA-EGC decreases and the total number of cracks increases.This is because the strength of geopolymer increases fast at early age,thus the later strength development of FA-EGC tend to be stable.At the same time,the bond strength between fiber and matrix,and the friction of fiber/matrix interface continue to increase with curing age,thus the bridging effect of fiber is gradually strengthened.In conclusion,the increase of curing age is beneficial to the development of tensile properties of FA-EGC.
文摘The purpose of this paper is to develop a prediction model of WGCLSM (waste LCD (liquid crystal display) glass controlled low strength materials) concrete, the relationship between UPV (ultrasonic pulse velocity) and compressive strength, UPV-strength model. The power function was used to perform the nonlinear-multivariate regression analysis of UPV with water-binder ratio (w/b), curing age (t) and waste glass content (G) in our previous study. Test results show that the compressive strength increases with UPV and approach to a linear relationship. Thus, the UPV-strength model was established by linear-multivariate regression analysis and the compressive strength evaluated by ultrasonic pulse velocity. The calculated results are in accordance with the laboratory measured data ultrasonic pulse velocity and compressive strength. In addition, the statistical analysis shows that the coefficient of determination R2 and the MAPE (mean absolute percentage error) were from 0.916 to 0.951 and 12.6% to 15.1% for the compressive strength, respectively. The proposed models are highly accurate in predicting the compressive and ultrasonic pulse velocity of WGCLSM concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.
文摘The fly ash based geopolymer has emerged as a capable and sustainable binder material in construction industry.Ultrasonic pulse velocity(UPV)method is a non-destructive technique for investigating the mechanical performance of concrete.Experimental investigation was performed for studying the effect of NaOH Molarity,Na2SiO3/NaOH and curing temperature on the ultrasonic pulse velocity of geopolymer mortar.Experiments were designed based on central composite design(CCD)technique of response surface methodology(RSM).Statistical model was developed and statistically validated and found significant as the difference between adjustable R-squared and predicted R-squared less than 0.2.Finally,the optimized mix proportion was assessed for maximized value of UPV.Experimental validation on the optimized mix reveals the close agreement between experimental and predicted values of UPV with significance level of more than 95%.The proposed technique improves the yield,the reliability of the product and the processes.
基金Project(KM200710015010) supported by the Scientific Research Program of Beijing Municipal Education Commission,China
文摘Pores,microcracks and density of plasma sprayed Cr2O3 coatings before and after high-intensity pulsed ion beam(HIPIB) irradiation were investigated using the ultrasonic reflection coefficient spectroscopy(URCS).The URCS was analyzed based on an acoustic transmission model for the multi-layered structure.The longitudinal velocity in the coatings was calculated from the experimental URCS,and the attenuation coefficient expression was deduced by comparing the experimental and numerical fitting amplitude spectral lines.The longitudinal velocity of as-sprayed Cr2O3 coating is 2 002 m/s,and increases to 2 099 and 2 148 m/s after being irradiated by HIPIB with 1 and 5 shots.Correspondingly,the factor A changes from 0.046 to 0.026 and 0.020 and n from 1.702 to 1.658 and 1.649 in the attenuation coefficient expression of α=Af n.It is observed that the surface morphology of Cr2O3 coatings changes from rough and porous to smooth and uniform with the increase of shot number,which accords with the ultrasonic analyses reasonably.The URCS seems to provide a convenient and nondestructive method to characterize surface modification of the plasma sprayed coatings.
基金supported by the National Natural Science Foundation of China(No.51974192)Shanxi Province Postgraduate Education Innovation Project(No.2020SY567)+2 种基金the Applied Basic Research Project of Shanxi Province(No.201801D121092)Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)Shanxi Science and Technology Major Project(No.20201102004)。
文摘To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.
文摘The focal hepatic lesion caused by local injection of absolute alcohol in rats was evaluated with ultrasonic contrast agent and pathologic examination. Twenty adult Wistar rats weighing about 200 g were injected with absolute alcohol (0. 05-0. 1 mL each one) on the exterior left lobe of the liver under the monitoring of ultrasound. Pulse inversion harmonic imaging was used to evaluate the focal lesion after bolus injection of ultrasonic contrast agent (0. 05 mL/200 g) through caudal vein. Seven days later, the focal lesion was studied again as before. The exterior left lobe of liver with focal lesion was incised and underwent pathologic examination. The results showed that all of the focal lesions could be defined clearly after bolus injection of the ultrasonic contrast agent under the mode of pulse inversion harmonic imaging. There was good correlation between the size of the focal lesion measured by ultrasound on the 7th day after the "ablation" under the mode of pulse inversion harmonic imaging and that gotten by pathologic examination (P=0.39). The focus size measured by ultrasound right after the ablation was larger than that gotten by pathologic examination (P=0. 002). It was concluded that ultrasonic contrast agent plus pulse inversion harmonic imaging could be used to assess the size of the focal hepatic lesion caused by local injection of absolute alcohol in rats.
文摘An extensive study of the thermal properties of Lithium Sodium Sulphate Hexa hydrate (LSSW) single crystal, with Trigonal structure, has been carried out using ultrasonic Pulse Echo Overlap (PEO) technique, Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA). The temperature variation of elastic constants of LiNa3(SO4)2·6H2O single crystal have been reported for the first time. The second order elastic stiffness constants C11,?C33, C44, along the various directions in the crystal have been determined in the temperature range 300 - 330 K. The change in velocity with temperature with respect to the room temperature value has been measured using PEO technique. Significant anomalies were observed in C11?and C33?at 316 K. The elastic constant C12?has shown no variation in the temperature range 300 - 319 K. A minor deviation for C44?at 305 K following a parabolic change has been observed. The minor anomalies observed in the elastic constants of LSSW may be due to its dehydration of water of crystallization in the range 304 - 319 K. DTA studies showed an appreciable endothermic change in the range 309 K-369.79 K. TGA curve exhibited a decrease in weight of 1.687 mg in the temperature range 304 K-360 K. The minor anomalies observed in the elastic constants of LSSW may be due to loosing of its water of crystallization in the range 309 - 319 K. On loosing water there will not be any change in chemical structure but there will be physical change associated with loosing of water molecule.
文摘In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.
文摘Objective: The ultrasonic findings of papillary thyroid carcinoma were analyzed by acoustic power pulse imaging, and the relationship between the expression of osteopontin and the expression of osteopontin was analyzed. Methods: Using color Doppler ultrasound in patients with lesions, morphology, internal echo, calcification and blood flow of the situation, and then switch to ARFI VTI mode and VTQ mode, VTI were measured with two-dimensional area and area ratio of VTQ mode SWV;osteopontin expression was detected in two groups of patients with thyroid tissues. Analysis of difference between the two the group index by using SPSS18.0 software, Pearson linear correlation method is used to analyze the area ratio and SWV value of thyroid tissue expression correlated with OPN. Results: The shape of papillary thyroid carcinoma nodules showed that the boundary was irregular and the shape of the nodules was burr. The shape of benign nodules was more than 1 with low echo in the interior. The shape of benign nodules showed clear boundary and middle hyperechoic in the interior. No calcification occurred in most lesions in that observation group, the area ratio in VTI mode is obviously higher than that of the control group, the difference was statistically significant (T=7.313, P=0.000), the SWV value in the VTQ model of the observation group was also significantly higher than that in the control group, the difference was statistically significant (t=43.334, P=0.000). The expression of OPNmRNA in the observation group was significantly higher than that of the control group , and the difference was statistically significant (t=8.894, P=0.000). Pearson linear correlation analysis showed that there was a significant positive correlation between OPNmRNA expression in papillary thyroid carcinoma and area ratio in VTI model and SWV course in VTQ model (r=0.235, 0.264;P<0.05). Conclusion: It is important for the diagnosis of papillary thyroid carcinoma to use the technique of acoustic power pulse imaging combined with the detection of OPNmRNA expression. It can be used as a new method for the diagnosis and prognosis of papillary thyroid carcinoma.
文摘By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found that the sonic velocity of the blends decreased as thetemperature increased, but attenuation coefficient increased and possessed a peak value. Largervelocity and smaller attenuation coefficient(α)can be obtained from perfect crosslinking networkstructures of pure DGEBA cured with phthalic anhydride(PA). As for cured DGEBA/PEO blendsystems,sonic velocity decreased as a function of PEO concentration,but attenuation coefficient(α) increased.
基金The research is supported by the China Postdoctoral Science Foundation (No. 20090460186).
文摘A novel ultrafast-convert hybrid pulse square-wave variable polarity arc welding power source was developed. The variable polarity current which crossed zero with no dead time possessed the ultrafast converting speed and the series of ultrasonic pulse current were superimposed in the positive polarity current duration. A high-efficiency hybrid pulse variable polarity gas tungsten arc welding (HPVP-GTAW)process for aluminum alloys was achieved. With X-ray inspection, microstructure analysis, tensile tests and scanning electron microscopy (SEM) for fracture surface, the square butt welding cbaracteristics of 5A06, 2A14 and 2219 aluminum alloys were tested, respectively. Experimental results show that microstructure and mechanical properties of these aluminum alloy welded joints are influenced significantly by the introduction of ultrasonic pulse current. The weld quality is improved predominantly by the novel HPVP-GTA W process.
基金financially supported by the National Natural Science Foundation of China(No.51675130)the Key Program of the National Natural Science Foundation of China(No.51435004)。
文摘The pulsed power ultrasonic-assisted gas metal arc welding(PU-GMAW)is a new development hybrid welding method.The influences of the pulsed power ultrasonic on the microstructure evolution of the welded joint of Al-Cu alloy were investigated by using scanning electron microscopy,transmission electron microscope and electron back scattering diffraction.The results showed that the efficient heat input in the PU-GMAW was increased by above 100%compared with the traditional GMAW.The grain and eutectic of the PU-GMAW weld seam were refined compared with that of the GMAW.Cavitation and acoustic streaming induced the dendrite fragmentation(α-Al)and heterogeneous nucleation,which were the main reasons for the grain refinement.The microhardness of the PU-GMAW welded joint was improved compared with that of the GMAW owing to the change of the eutectic and grain.
文摘The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.