期刊文献+
共找到24,431篇文章
< 1 2 250 >
每页显示 20 50 100
基于AquaCrop和WinSRFR组合的夏玉米沟灌方案优化
1
作者 聂卫波 马云鹏 +1 位作者 冯正江 李格 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期51-61,共11页
确定作物合理的灌溉制度和灌水技术要素组合是科学管理农业水资源的基础,可有效缓解水资源短缺矛盾和保障区域粮食安全。基于此,该研究利用在陕西省杨陵区(2022年)和武功县(2017年)进行的夏玉米田间试验,分别对AquaCrop模型和WinSRFR软... 确定作物合理的灌溉制度和灌水技术要素组合是科学管理农业水资源的基础,可有效缓解水资源短缺矛盾和保障区域粮食安全。基于此,该研究利用在陕西省杨陵区(2022年)和武功县(2017年)进行的夏玉米田间试验,分别对AquaCrop模型和WinSRFR软件进行校准和验证,确定了研究区夏玉米典型水文年(丰水年、平水年和干旱年)的灌溉制度;通过反演沟灌土壤入渗参数和田面糙率,结合确定的灌溉制度,优化了沟灌灌水技术要素组合(入沟流量和灌水时间),并量化评价了优化灌溉制度和灌水技术要素组合对夏玉米的增产能力。结果表明,AquaCrop模型能准确模拟研究区夏玉米生长过程,其中产量模拟值与实测值的相对误差绝对值均值分别为1.85%(校准)和7.47%(验证);研究区夏玉米丰水年(灌浆期)和平水年(拔节期)需灌水1次,干旱年(拔节期和灌浆期)需灌水2次,单次灌水量均为55 mm;反演所得研究区沟灌土壤入渗参数k和α取值范围分别为是55.416~98.437 mm/h^(α)和0.351~0.858,田面糙率n均值为0.056;合理的入沟流量和停水时间取值范围分别为2.2~3.3 L/s和35~16 min,可获得高灌水质量(综合灌水质量指标C_(i)≥85%);以2022年夏玉米优化的灌溉制度和灌水技术要素优化组合为基础,模拟所得夏玉米产量为7.819 t/hm^(2),与无灌溉(5.972 t/hm^(2))、现状条件(7.424 t/hm^(2))和仅对灌溉制度优化(7.659 t/hm^(2))情景相比较,分别提高了30.9%、5.3%和2.1%,且所需灌水量较现状条件可减少59 mm。研究结果可为研究区域夏玉米灌溉制度制定和沟灌方案设计提供理论基础和技术支撑。 展开更多
关键词 作物 模型 沟灌 优化 入沟流量 停水时间 灌水质量
下载PDF
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system 被引量:2
2
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Integrating artificial intelligence and high-throughput phenotyping for crop improvement 被引量:1
3
作者 Mansoor Sheikh Farooq Iqra +3 位作者 Hamadani Ambreen Kumar A Pravin Manzoor Ikra Yong Suk Chung 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1787-1802,共16页
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev... Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI. 展开更多
关键词 artificial intelligence crop improvement data analysis high-throughput phenotyping machine learning precision agriculture trait selection
下载PDF
A dual-RPA based lateral flow strip for sensitive,on-site detection of CP4-EPSPS and Cry1Ab/Ac genes in genetically modified crops 被引量:1
4
作者 Jinbin Wang Yu Wang +7 位作者 Xiuwen Hu Yifan Chen Wei Jiang Xiaofeng Liu Juan Liu Lemei Zhu Haijuan Zeng Hua Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期183-190,共8页
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP... Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field. 展开更多
关键词 Genetically modifi ed crops On-site detection Lateral fl ow test strips Dual recombinase polymerase amplification (RPA)
下载PDF
Adding Value to Crop Production Systems by Integrating Forage Cover Crop Grazing
5
作者 Robert B. Mitchell Daren D. Redfearn +9 位作者 Kenneth P. Vogel Terry J. Klopfenstein Galen Erickson P. Stephen Baenziger Bruce E. Anderson Mary E. Drewnoski Jay Parsons Steven D. Masterson Marty R. Schmer Virginia L. Jin 《American Journal of Plant Sciences》 CAS 2024年第3期180-192,共13页
In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance... In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA. 展开更多
关键词 Cover crops SOYBEAN TRITICALE WHEAT
下载PDF
Optimizing trade-offs between light transmittance and intraspecific competition under varying crop layouts in a maize-soybean strip relay cropping system
6
作者 Liang Feng Kai Shi +8 位作者 Xin Liu Huan Yang Tian Pu Yushan Wu Taiwen Yong Feng Yang Xiaochun Wang Kees Jan van Groenigen Wenyu Yang 《The Crop Journal》 SCIE CSCD 2024年第6期1780-1790,共11页
Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of... Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of light interception,light conversion,and LUE for relay maize and relay soybean to different crop layouts remains unclear.We aimed to quantify the effect of crop layout on intraspecific and interspecific competition,light interception,light conversion,LUE,and land productivity between relay maize and relay soybean.We conducted a field experiment for four consecutive years from 2017 to 2020 in Sichuan province,China,comparing different crop layouts(bandwidth 2.0 m,row ratio 2:2;bandwidth 2.4 m,row ratio 2:3;bandwidth 2.8 m,row ratio 2:4),with sole maize and sole soybean as controls.The results showed that relay maize in the 2.0 m bandwidth layout had the largest leaf area index and plant biomass,the lowest intraspecific competitive intensity and the highest aggressiveness.Compared to a bandwidth of 2.0 m,a bandwidth of 2.8 m significantly decreased relay maize leaf area index by 11%and plant biomass by 24%,while a 2.4 m bandwidth caused roughly half these reductions.The 2.0 m bandwidth layout also significantly improved crop light interception and LUE compared to sole maize.The light interception,light interception rate,light conversion rate and LUE in relay maize all decreased significantly with increasing bandwidth,but they increased in relay soybean.The increased light transmittance to the lower and middle canopy with increasing bandwidth did not compensate for the loss of relay maize yield caused by increased intraspecific competition.However,it enhanced the yield of relay soybeans.Increasing the bandwidth by 80 cm increased the relay maize intraspecific competition by 580%,and reduced maize yield by 33%,light interception by 12%,and LUE by 18%.In contrast,the relay soybean intraspecific competition was reduced by 64%,and the soybean yield was increased by 26%,light interception by 32%and LUE by 46%.Relay cropping systems with a 2.0 m bandwidth optimize the trade-off between light transmittance and intraspecific competition of relay crops.These systems achieve the highest LUE,group yield and economic benefits,making them a recommended crop layout for the southwest regions of China.Our study offers valuable insights for developing strip relay cropping systems that maximize light utilization and contributes to the theoretical understanding of efficient sunlight use in relay cropping practices. 展开更多
关键词 crop layout Relay cropping MAIZE Intraspecific-interspecific relationships Land productivity
下载PDF
Assessment of Crop Yield in China Simulated by Thirteen Global Gridded Crop Models
7
作者 Dezhen YIN Fang LI +3 位作者 Yaqiong LU Xiaodong ZENG Zhongda LIN Yanqing ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期420-434,共15页
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o... Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China. 展开更多
关键词 global gridded crop model historical crop yield China multi-model evaluation
下载PDF
Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation
8
作者 Na Zhao Xiquan Wang +6 位作者 Jun Ma Xiaohong Li Jufeng Cao Jie Zhou Linmei Wu Peiyi Zhao Weidong Cao 《The Crop Journal》 SCIE CSCD 2024年第4期1233-1241,共9页
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ... In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity. 展开更多
关键词 Green manure STRAW MANURE Soil organic carbon Soil quality crop production Diversified cropping
下载PDF
Crops模型在农业灌溉上的应用研究
9
作者 史依飞 于蓉蓉 +1 位作者 刘诗语 丁榆宾 《仪器与设备》 2024年第3期347-353,共7页
灌溉是农业灌溉管理中非常重要的问题之一,传统的人工灌溉不仅浪费人力又工作效率不高。基于Crops模型的灌溉装置拟对农田中土壤环境、大气湿度和病虫害情况进行采样研究,掌握农田中的土壤环境以及空气湿度的变化规律,获得不同情况下的... 灌溉是农业灌溉管理中非常重要的问题之一,传统的人工灌溉不仅浪费人力又工作效率不高。基于Crops模型的灌溉装置拟对农田中土壤环境、大气湿度和病虫害情况进行采样研究,掌握农田中的土壤环境以及空气湿度的变化规律,获得不同情况下的相关数据,在对相关数据进行分析的基础上,采用温度湿度传感器对一定范围内的各项指标进行分析,为田地里的农作物精准灌溉提供相关数据。Irrigation is one of the very important issues in agricultural irrigation management, and traditional manual irrigation not only wastes manpower but also has low work efficiency. The irrigation device based on the Crops model intends to sample and study the soil environment, atmospheric humidity and pests and diseases in the farmland, grasp the change law of the soil environment and air humidity in the farmland, obtain the relevant data under different conditions, and on the basis of the analysis of the relevant data, the temperature and humidity sensor is used to analyze the indicators within a certain range, so as to provide relevant data for the precise irrigation of crops in the field. 展开更多
关键词 农业灌溉 crops模型 传感器
下载PDF
Enhancing Adaptability, Nutritional Quality in Tropical Tuber Crops: Source for Adaptive Food and Nutrition
10
作者 Archana Mukherjee Janardanan Sreekumar +3 位作者 Madhavi Nair Sheela Sheela Immanuel Manas Ranjan Sahoo Vivek Hegde 《Food and Nutrition Sciences》 CAS 2024年第11期1141-1169,共29页
The tropical roots and tuber crops (R and T) consist of cassava, sweet potato, yams, elephant foot yam, taro, tannia and a couple of minor tuber crops. Tropical tuber crops are the third most important food crops afte... The tropical roots and tuber crops (R and T) consist of cassava, sweet potato, yams, elephant foot yam, taro, tannia and a couple of minor tuber crops. Tropical tuber crops are the third most important food crops after cereals and pulses. These crops play a crucial role in providing food and nutritional security to the rural masses in Africa, Latin America and parts of Asia. Cassava and sweet potato rank among the top 10 food crops produced in developing countries and contribute to about 6% of world’s dietary calories. In India, tropical tubers are grown mostly in states like Odisha, West Bengal, Andhra Pradesh, Kerala, Tamil Nadu, Bihar and North East covering 4.5% of the total area under vegetables with 5.7% of the total vegetable production. Low income farmers and most undernourished households in India depend on R and T crops. They value these crops for their high calorie and stable yields under conditions in which other crops may fail. Genetic diversity of major tropical tuber crops provides options for its diverse usage in “multicuisine”, “nutrition”, “feed”, health care” and renewable resources of processing firms. Water productivity is also higher, for example, to produce 1 kg of tubers, sweet potatoes require water (383 l), taro (606 l), yam (343 l), as compared to rice (1673 l), maize (1222 l), wheat (1827 l), etc. Tuber crops are one of most efficient producers of dry matter and edible energy. These crops have potential to reverse soil degradation. Cassava is already recognized as drought tolerant followed by yam. Tubers of taro, elephant foot yam and yams can be stored under zero energy conditions for 6 - 7 months unlike temperate potatoes in cold storage. The natural climatic resilience as well as inherent nutrition attributes, has been explored further. Such studies made these crops more robust to changing climate and as the source of nutrient enriched food bowls. Sweet potato variety Bhu Krishna is the first purple flesh variety in India containing (90 mg/100 g anthocyanin) coupled with starch 22% - 25%. Similarly, the orange flesh Bhu Sona containing beta carotene (14 mg/100 g) coupled with high starch 22% - 24% is the first variety having both high beta carotene and high starch. These varieties are tolerant to salinity and Bhu Krishna is resistant to weevil. Likewise, developed improved taro varieties resistant to biotic blight stress, tolerant to salinity and are enriched with micro nutrients. These improved varieties are used to breed the superior types further. All these climate resilient, nutritionally enriched varieties will have a greater impact on supplementing rainbow food for all. These can address the issues like “food insecurity”, “malnutrition”, diet related issue of mass consumers across the world. The analysis of innovations on enhancing adaptability, nutritional quality with a management matrix would help in strengthening future programme. 展开更多
关键词 Tuber crops ENHANCING ADAPTABILITY Nutritional Quality Adaptive Food-Nutrition
下载PDF
The multiple roles of crop structural change in productivity,nutrition and environment in China:A decomposition analysis
11
作者 Xiangyang Zhang Yumei Zhang Shenggen Fan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1763-1773,共11页
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut... China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs. 展开更多
关键词 crop structural change land productivity NUTRITION carbon emissions
下载PDF
Trends in the global commercialization of genetically modified crops in 2023
12
作者 Xingru Cheng Haohui Li +3 位作者 Qiaoling Tang Haiwen Zhang Tao Liu Youhua Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期3943-3952,共10页
The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new producti... The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new production strategy for dealing with insect pests and weeds while reducing the cultivated land area.This article provides a comprehensive examination of the global distribution of GM crops in 2023.It discusses the internal factors that are driving their adoption,such as the increasing number of GM crops and the growing variety of commodities.This article also provides information support and application guidance for the new developments in global agricultural science and technology. 展开更多
关键词 genetically modified crops COMMERCIALIZATION global agricultural
下载PDF
Nitrogen rhizodeposition from corn and soybean,and its contribution to the subsequent wheat crops
13
作者 Sainan Geng Lantao Li +6 位作者 Yuhong Miao Yinjie Zhang Xiaona Yu Duo Zhang Qirui Yang Xiao Zhang Yilun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2446-2457,共12页
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho... Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized. 展开更多
关键词 crop rotation nitrogen rhizodeposition meta-analysis soil aggregates nitrogen transfer
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
14
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation SOYBEAN NODULE
下载PDF
Use of oilseed crops biomass for heavy metal treatment in water
15
作者 Carlos Pena-Guzman Angela Otalvaro-Alvarez Tatiana Jimenez-Ariza 《Oil Crop Science》 CSCD 2024年第3期177-186,共10页
The treatment of heavy metals in water is of high importance worldwide,and different treatment types have been developed.The use of plant material is becoming more and more important,and oilseed crops biomass have bee... The treatment of heavy metals in water is of high importance worldwide,and different treatment types have been developed.The use of plant material is becoming more and more important,and oilseed crops biomass have been investigated in terms of phytoremediation and biosorption processes.This article is a review of the literature reporting the applications in 10 different plants and evaluating the removal efficiencies for 12 metals,including the findings of 81 publications.Moringa olifera and Helianthus annuus are the most studied plants,whereas Cu(21.9%),Cd(18.5%),and Pb(19.9%)are the most studied metals.As a result,it was found that more than 90%of Pb,Cu,Cd,Fe,Zn,Ni,Cr,Sr and Mn showed removals in their experiments.At the same time,the variables most related to the efficiency of metal removal are pH,temperature,and contact time.This article includes a review of the biosorption isotherms used in the different studies. 展开更多
关键词 Oilseed crops PHYTOREMEDIATION BIOSORPTION Heavy metals
下载PDF
Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol
16
作者 Guilong Li Xiaofen Chen +8 位作者 Wenjing Qin Jingrui Chen Ke Leng Luyuan Sun Ming Liu Meng Wu Jianbo Fan Changxu Xu Jia Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2099-2111,共13页
The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little i... The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols. 展开更多
关键词 cover crops soil multifunctionality microbial richness network complexity ecological cluster
下载PDF
Advances in Understanding Cadmium Stress and Breeding of Cadmium-Tolerant Crops
17
作者 LIANG Liang WANG Chenchang CHEN Tao 《Rice science》 SCIE CSCD 2024年第5期507-525,共19页
Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of C... Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity. 展开更多
关键词 cadmium stress crop tolerance physiological response molecular breeding strategy
下载PDF
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
18
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 cropping system Water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
下载PDF
The microbial community,nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat-maize double-cropping systems
19
作者 Zeli Li Fuli Fang +10 位作者 Liang Wu Feng Gao Mingyang Li Benhang Li Kaidi Wu Xiaomin Hu Shuo Wang Zhanbo Wei Qi Chen Min Zhang Zhiguang Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3592-3609,共18页
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi... Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients. 展开更多
关键词 potassium fertilizer gradient microbial community wheat-maize double cropping climate change yield
下载PDF
Comprehensive Overview and Analytical Study on Automatic Bird Repellent Laser System for Crop Protection
20
作者 Sireesha Abotula Srinivas Gorla +1 位作者 Prasad Reddy PVGD Mohankrishna S 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期38-53,共16页
Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This... Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies. 展开更多
关键词 Bird repellent crop protection IOT UAV Deep Learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部