To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
The objective of this paper is to investigate the turbulent flow structures around the submarine model and evaluate the effect of the yaw angle on the turbulent flow characteristics.The large eddy simulation based on ...The objective of this paper is to investigate the turbulent flow structures around the submarine model and evaluate the effect of the yaw angle on the turbulent flow characteristics.The large eddy simulation based on the boundary data immersion method is used to investigate.The computational domain consists of 1.2×10^(8)uniformly distributed Cartesian orthogonal grid nodes to capture the basic flow characteristics around the model.The pressure coefficient,friction coefficient and wake velocity distribution are in good agreement with the experimental data.Three different types of vortex structures were mainly captured around the model,including horseshoe vortex,sail tip vortex and crossflow separation vortex.With the increase of the yaw angle,the asymmetry of the horseshoe vortex and the tip vortex gradually increases,and the vortex strength of the vortex leg on the windward of the horseshoe vortex and the vortex strength of the tip vortex also increase gradually.For the crossflow separation vortex,the flow separation zone gradually expands and migrates downstream with the increase of the yaw angle.展开更多
[目的]获取三七Panax notoginseng种植土壤与触土部件相互作用的离散元仿真模型参数。[方法]基于Hertz-Mindlin with JKR接触模型建立三七种植土壤离散元模型并进行参数标定。首先,以土壤颗粒间及土壤-65Mn钢板间的JKR表面能、恢复系数...[目的]获取三七Panax notoginseng种植土壤与触土部件相互作用的离散元仿真模型参数。[方法]基于Hertz-Mindlin with JKR接触模型建立三七种植土壤离散元模型并进行参数标定。首先,以土壤颗粒间及土壤-65Mn钢板间的JKR表面能、恢复系数、静摩擦系数、动摩擦系数为试验因素,以土壤堆积角、土壤在65Mn板上的滚动距离为评价指标。其次,采用基于Box-Behnken的响应面优化方法建立土壤堆积角、滚动距离回归模型。[结果]对回归模型进行寻优,得到仿真标定的土壤颗粒间JKR表面能、恢复系数、静摩擦系数和动摩擦系数的最优值分别为14.88 J/m2、0.53、0.46和0.150,标定的土壤-65Mn板间JKR表面能、恢复系数、静摩擦系数和动摩擦系数的最优值分别为7.02 J/m2、0.59、0.57和0.058。通过三七挖掘铲仿真试验与土槽试验对比分析得到,挖掘铲受X、Y轴方向平均阻力仿真值与实测值相对误差分别为9.91%、8.78%。[结论]标定的离散元土壤模型参数准确度高,研究可为三七收获机触土部件及装备优化提供理论参考。展开更多
麦-玉一年两熟的江淮、黄淮地区秸秆混土还田保护性耕作模式,麦秸秆-土壤混合的种床缺乏准确的物料相互接触参数,阻碍了机械化玉米精密播种过程中关键部件、种粒、肥料与混合种床相互作用研究,进而制约了机具优化与改进。采用物理与EDE...麦-玉一年两熟的江淮、黄淮地区秸秆混土还田保护性耕作模式,麦秸秆-土壤混合的种床缺乏准确的物料相互接触参数,阻碍了机械化玉米精密播种过程中关键部件、种粒、肥料与混合种床相互作用研究,进而制约了机具优化与改进。采用物理与EDEM离散元方法结合研究非连续体麦秸秆-土壤混合物之间相互作用,选用Bonding V2黏结模型搭建柔性麦秸秆段“元颗粒”,选取Hertz-Mindlin with JKR模型对一定湿度的土壤进行参数标定。首先,以圆桶提升麦秸秆和土壤种床混合物堆积角为响应值,采用Plackett-Burman筛选试验和最陡爬坡试验分别对显著影响因素从大到小排序和缩近最佳取值范围。利用Box-Behnken试验构建了显著影响因素与堆积角二阶回归模型,对显著因素交互项进行响应曲面分析,利用Design-Expert软件优化模型并以实测堆积角39.94°为目标响应值,计算得土壤JKR表面能0.500、土壤-秸秆动摩擦系数0.065 8、土壤-秸秆JKR表面能0.262及土壤-土壤动摩擦系数0.155,仿真验证误差1.08%,表明标定的接触模型参数可靠。该研究可为麦-玉保护性耕作模型下混合种床与机具精密播种相互作用研究提供参考和理论依据。展开更多
Method of obtaining landslide evaluating information by using Interferometric Synthetic Aperture Radar (InSAR) technique was discussed. More precision landslide surface deformation data extracted from InSAR image need...Method of obtaining landslide evaluating information by using Interferometric Synthetic Aperture Radar (InSAR) technique was discussed. More precision landslide surface deformation data extracted from InSAR image need take suitable SAR interferometric data selecting, path tracking, phase unwrapping processes. Then, the DEM model of scope and surface shape of the landslide was built. Combining with geological property of landslide and sliding displacements obtained from InSAR/D-InSAR images, a new landslide forecasting model called equal central angle slice method for those not obviously deformed landslides was put forward. This model breaks the limits of traditional research methods of geology. In this model, the landslide safety factor was calculated by equal central angle slice method, then considering the persistence ratio of the sliding surface based on plastic theory, the minimum safety factor was the phase when plastic area were complete persistence. This new model makes the application of InSAR/D-InSAR technology become more practical in geology hazard research.展开更多
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3303500)the National Natural Science Foundation of China(Grant No.52279081)the Fundamental Research Funds for the Central Universities(Grant No.2023CX01004).
文摘The objective of this paper is to investigate the turbulent flow structures around the submarine model and evaluate the effect of the yaw angle on the turbulent flow characteristics.The large eddy simulation based on the boundary data immersion method is used to investigate.The computational domain consists of 1.2×10^(8)uniformly distributed Cartesian orthogonal grid nodes to capture the basic flow characteristics around the model.The pressure coefficient,friction coefficient and wake velocity distribution are in good agreement with the experimental data.Three different types of vortex structures were mainly captured around the model,including horseshoe vortex,sail tip vortex and crossflow separation vortex.With the increase of the yaw angle,the asymmetry of the horseshoe vortex and the tip vortex gradually increases,and the vortex strength of the vortex leg on the windward of the horseshoe vortex and the vortex strength of the tip vortex also increase gradually.For the crossflow separation vortex,the flow separation zone gradually expands and migrates downstream with the increase of the yaw angle.
文摘麦-玉一年两熟的江淮、黄淮地区秸秆混土还田保护性耕作模式,麦秸秆-土壤混合的种床缺乏准确的物料相互接触参数,阻碍了机械化玉米精密播种过程中关键部件、种粒、肥料与混合种床相互作用研究,进而制约了机具优化与改进。采用物理与EDEM离散元方法结合研究非连续体麦秸秆-土壤混合物之间相互作用,选用Bonding V2黏结模型搭建柔性麦秸秆段“元颗粒”,选取Hertz-Mindlin with JKR模型对一定湿度的土壤进行参数标定。首先,以圆桶提升麦秸秆和土壤种床混合物堆积角为响应值,采用Plackett-Burman筛选试验和最陡爬坡试验分别对显著影响因素从大到小排序和缩近最佳取值范围。利用Box-Behnken试验构建了显著影响因素与堆积角二阶回归模型,对显著因素交互项进行响应曲面分析,利用Design-Expert软件优化模型并以实测堆积角39.94°为目标响应值,计算得土壤JKR表面能0.500、土壤-秸秆动摩擦系数0.065 8、土壤-秸秆JKR表面能0.262及土壤-土壤动摩擦系数0.155,仿真验证误差1.08%,表明标定的接触模型参数可靠。该研究可为麦-玉保护性耕作模型下混合种床与机具精密播种相互作用研究提供参考和理论依据。
基金Project(BK2006171) supported by the Natural Sciences Foundation of Jiangsu Province
文摘Method of obtaining landslide evaluating information by using Interferometric Synthetic Aperture Radar (InSAR) technique was discussed. More precision landslide surface deformation data extracted from InSAR image need take suitable SAR interferometric data selecting, path tracking, phase unwrapping processes. Then, the DEM model of scope and surface shape of the landslide was built. Combining with geological property of landslide and sliding displacements obtained from InSAR/D-InSAR images, a new landslide forecasting model called equal central angle slice method for those not obviously deformed landslides was put forward. This model breaks the limits of traditional research methods of geology. In this model, the landslide safety factor was calculated by equal central angle slice method, then considering the persistence ratio of the sliding surface based on plastic theory, the minimum safety factor was the phase when plastic area were complete persistence. This new model makes the application of InSAR/D-InSAR technology become more practical in geology hazard research.