Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher fr...Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format.展开更多
1.Introduction In order to decipher a complex biological process,tools are required to perturb the various players involved to gain information about the important parameters.Optogenetic modules are genetically encode...1.Introduction In order to decipher a complex biological process,tools are required to perturb the various players involved to gain information about the important parameters.Optogenetic modules are genetically encoded molecular reagents that,when expressed in cells,allow a specific biological process to be precisely controlled by light in a spatiotemporal manner[1].Optogenetics thus offers cell biologists an unprecedented new way to perturb cellular activities.The application of optogenetic approaches in cellular biology and synthetic biology research has evolved tremendously in the last few years[2–4].展开更多
Lens-free on-chip microscopy with RGB LEDs(LFOCM-RGB)provides a portable,cost-effective,and high-throughput imaging tool for resource-limited environments.However,the weak coherence of LEDs limits the high-resolution ...Lens-free on-chip microscopy with RGB LEDs(LFOCM-RGB)provides a portable,cost-effective,and high-throughput imaging tool for resource-limited environments.However,the weak coherence of LEDs limits the high-resolution imaging,and the luminous surfaces of the LED chips on the RGB LED do not overlap,making the coherence-enhanced executions tend to undermine the portable and cost-effective implementation.Here,we propose a specially designed pinhole array to enhance coherence in a portable and cost-effective implementation.It modulates the three-color beams from the RGB LED separately so that the three-color beams effectively overlap on the sample plane while reducing the effective light-emitting area for better spatial coherence.The separate modulation of the spatial coherence allows the temporal coherence to be modulated separately by single spectral filters rather than by expensive triple spectral filters.Based on the pinhole array,the LFOCM-RGB simply and effectively realizes the high-resolution imaging in a portable and cost-effective implementation,offering much flexibility for various applications in resource-limited environments.展开更多
If single chip micro computer controls light-emitting diode(LED),it needs abundant peripheral resources,but in this way,it is not convenient to be expanded,modified and maintained.In order to overcome these shortcomin...If single chip micro computer controls light-emitting diode(LED),it needs abundant peripheral resources,but in this way,it is not convenient to be expanded,modified and maintained.In order to overcome these shortcomings,field programmable gate array(FPGA)is used to control LED.The hardware design uses low power consumption and high performance device EP1C6Q240C8.Quartus II is the software development environment.There are three modules built under the software development environment:divided clock module,word stock module and LED dot matrix display module,and these independent modules are connected to be a whole system.Finally,32×64 dot matrix display is realized successfully.It is convenient for the customer to adjust the three independent modules according to actual demands and it is easier to realize online updation.展开更多
[Objective] The aim was to introduce characters of light sources and select the optimal lamp scheme for floral production in greenhouses. [Method] With chrysanthemum cuttings as materials, HPSL, energy-saving fluoresc...[Objective] The aim was to introduce characters of light sources and select the optimal lamp scheme for floral production in greenhouses. [Method] With chrysanthemum cuttings as materials, HPSL, energy-saving fluorescent lamp, and LED agricultural lamp were made use of to carry out field tests in order to compare practical effects according to light characters of different lamps and plant growth de-mands. [Result] The results show that LED lamp performed the best of the three in practical use. LED square lamp designed in bat-wing shape would be the most ben-eficial for lamp distribution in a greenhouse. [Conclusion] LED agricultural lamp is the most popular currently, for it is energy saving and easy for operation.展开更多
The high power light emitting diode (LED) array integrated with the microchannel heat sink is designed in this paper, and then optimal analysis and simulation have been carried out. According to the theory of heat t...The high power light emitting diode (LED) array integrated with the microchannel heat sink is designed in this paper, and then optimal analysis and simulation have been carried out. According to the theory of heat transfer and fluid mechanics, the calculation of the thermal resistance for the microchannel heat sink is obtained, and the thermal resis- tance is minimized. Finally the simulation with FLUENT software is developed to verify the theoretical analysis. Established analysis and simulation show that the width of the cooling channel is 0.1 mm, and the cooling water flow rate is 1 m/s. On the other hand, the system acquires the best heat dissipation effect, and the minimum of thermal resis- tance is 0.019 W/℃.展开更多
Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LE...Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LEDs.Besides,LED arrays are qualified due to their high optical output power.However,LED arrays have not been widely used for investigating optical effects,e.g.,the Lau effect.In this paper,we propose the application of an LED array for realizing the Lau effect by taking into account the influence of the coherence properties of illumination on the Lau effect.Using spatially incoherent illumination with the LED array or a single LED,triangular distributed Lau fringes can be obtained.We apply the obtained Lau fringes in the optical lithography to produce analog structures.Compared to a single LED,the Lau fringes using the LED array have significantly higher intensities.Hence,the exposure time in the lithography process is largely reduced.展开更多
A BCI (brain computer interface) established a new direct communication channel using the brain activity between the human brain and machine. The visual stimulus with a certain frequency is present to the BCI users;...A BCI (brain computer interface) established a new direct communication channel using the brain activity between the human brain and machine. The visual stimulus with a certain frequency is present to the BCI users; it exists in a particular condition to observe a continuous brain response respect to frequent of visual stimuli. A significant problem when engaged the SSVEP (steady-state visual evoked potential) based on BCI, it will be exhausted and may suffer for the users when staring at flashing stimuli. This experimental study investigates how the differences in LED's-colors influence of SSVEP with respect to (i.e., frequencies and phases). The result shows that the visualization of phase delays in lower frequencies greater than in higher frequencies.展开更多
This paper designs a 3 × 3 light emitting diode (LED) array with a total power of 9 W, presents a thermal analysis of plate fin, in-line and staggered pin fin heat sinks for a high power LED lighting system, an...This paper designs a 3 × 3 light emitting diode (LED) array with a total power of 9 W, presents a thermal analysis of plate fin, in-line and staggered pin fin heat sinks for a high power LED lighting system, and develops a 3D one-fourth finite element (FE) model to predict the system temperature distribution. Three kinds of heat sinks are compared under the same conditions. It is found that LED chip junction temperature is 48.978℃ when the fins of heat sink are aligned alternately.展开更多
We report a new monolithic structure of GaN-based light-emitting diode (LED) which can be operated under high voltage or alternative current. Differing from the conventional single LED chip, the monolithic lightemit...We report a new monolithic structure of GaN-based light-emitting diode (LED) which can be operated under high voltage or alternative current. Differing from the conventional single LED chip, the monolithic lightemitting diode (MLED) array contains microchips which are interconnected in series or parallel. The key chip fabrication processing methods of the monolithic LED array include deep dry etching, sidewall insulated protec- tion, and electrode interconnection. A 12 V GaN-based blue high voltage light emitting diode was designed and fabricated in our experiment. The forward current-voltage characteristics of MLEDs were consistent with those of conventional single junction light emitting diodes.展开更多
基金This research was funded by the National Key Research and Development Program of China(2022YFB2802803)the Natural Science Foundation of China Project(No.61925104,No.62031011,No.62201157,No.62074072).
文摘Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format.
基金the Zhejiang Provincial Natural Science Foundation(LR18H180001)Joint China-Sweden Mobility(31611130037)+1 种基金National Natural Science Foundation of China(31571480 and 31811530055)National Key Research and Development Program of China(2016YFF0101406).
文摘1.Introduction In order to decipher a complex biological process,tools are required to perturb the various players involved to gain information about the important parameters.Optogenetic modules are genetically encoded molecular reagents that,when expressed in cells,allow a specific biological process to be precisely controlled by light in a spatiotemporal manner[1].Optogenetics thus offers cell biologists an unprecedented new way to perturb cellular activities.The application of optogenetic approaches in cellular biology and synthetic biology research has evolved tremendously in the last few years[2–4].
基金supported by the Shenzhen Key Basic Program(No.JCYJ20200109143031287)the Shenzhen General Basic Program(No.WDZC20220816110140002)。
文摘Lens-free on-chip microscopy with RGB LEDs(LFOCM-RGB)provides a portable,cost-effective,and high-throughput imaging tool for resource-limited environments.However,the weak coherence of LEDs limits the high-resolution imaging,and the luminous surfaces of the LED chips on the RGB LED do not overlap,making the coherence-enhanced executions tend to undermine the portable and cost-effective implementation.Here,we propose a specially designed pinhole array to enhance coherence in a portable and cost-effective implementation.It modulates the three-color beams from the RGB LED separately so that the three-color beams effectively overlap on the sample plane while reducing the effective light-emitting area for better spatial coherence.The separate modulation of the spatial coherence allows the temporal coherence to be modulated separately by single spectral filters rather than by expensive triple spectral filters.Based on the pinhole array,the LFOCM-RGB simply and effectively realizes the high-resolution imaging in a portable and cost-effective implementation,offering much flexibility for various applications in resource-limited environments.
文摘If single chip micro computer controls light-emitting diode(LED),it needs abundant peripheral resources,but in this way,it is not convenient to be expanded,modified and maintained.In order to overcome these shortcomings,field programmable gate array(FPGA)is used to control LED.The hardware design uses low power consumption and high performance device EP1C6Q240C8.Quartus II is the software development environment.There are three modules built under the software development environment:divided clock module,word stock module and LED dot matrix display module,and these independent modules are connected to be a whole system.Finally,32×64 dot matrix display is realized successfully.It is convenient for the customer to adjust the three independent modules according to actual demands and it is easier to realize online updation.
基金Supported by Shanghai Science and Technology Committee(11DZ1141400)~~
文摘[Objective] The aim was to introduce characters of light sources and select the optimal lamp scheme for floral production in greenhouses. [Method] With chrysanthemum cuttings as materials, HPSL, energy-saving fluorescent lamp, and LED agricultural lamp were made use of to carry out field tests in order to compare practical effects according to light characters of different lamps and plant growth de-mands. [Result] The results show that LED lamp performed the best of the three in practical use. LED square lamp designed in bat-wing shape would be the most ben-eficial for lamp distribution in a greenhouse. [Conclusion] LED agricultural lamp is the most popular currently, for it is energy saving and easy for operation.
文摘The high power light emitting diode (LED) array integrated with the microchannel heat sink is designed in this paper, and then optimal analysis and simulation have been carried out. According to the theory of heat transfer and fluid mechanics, the calculation of the thermal resistance for the microchannel heat sink is obtained, and the thermal resis- tance is minimized. Finally the simulation with FLUENT software is developed to verify the theoretical analysis. Established analysis and simulation show that the width of the cooling channel is 0.1 mm, and the cooling water flow rate is 1 m/s. On the other hand, the system acquires the best heat dissipation effect, and the minimum of thermal resis- tance is 0.019 W/℃.
基金the support by the Deutsche Forschungsgemeinschaft(DFG)in the framework of Research Training Group“Tip and laser-based 3D-nanofabrication in extended macroscopic working areas”(GRK 2182/1)at the Technische Universitat Ilmenau,Germany.
文摘Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LEDs.Besides,LED arrays are qualified due to their high optical output power.However,LED arrays have not been widely used for investigating optical effects,e.g.,the Lau effect.In this paper,we propose the application of an LED array for realizing the Lau effect by taking into account the influence of the coherence properties of illumination on the Lau effect.Using spatially incoherent illumination with the LED array or a single LED,triangular distributed Lau fringes can be obtained.We apply the obtained Lau fringes in the optical lithography to produce analog structures.Compared to a single LED,the Lau fringes using the LED array have significantly higher intensities.Hence,the exposure time in the lithography process is largely reduced.
文摘A BCI (brain computer interface) established a new direct communication channel using the brain activity between the human brain and machine. The visual stimulus with a certain frequency is present to the BCI users; it exists in a particular condition to observe a continuous brain response respect to frequent of visual stimuli. A significant problem when engaged the SSVEP (steady-state visual evoked potential) based on BCI, it will be exhausted and may suffer for the users when staring at flashing stimuli. This experimental study investigates how the differences in LED's-colors influence of SSVEP with respect to (i.e., frequencies and phases). The result shows that the visualization of phase delays in lower frequencies greater than in higher frequencies.
基金Project supported by the National Natural Science Foundation of China(No.60666002)
文摘This paper designs a 3 × 3 light emitting diode (LED) array with a total power of 9 W, presents a thermal analysis of plate fin, in-line and staggered pin fin heat sinks for a high power LED lighting system, and develops a 3D one-fourth finite element (FE) model to predict the system temperature distribution. Three kinds of heat sinks are compared under the same conditions. It is found that LED chip junction temperature is 48.978℃ when the fins of heat sink are aligned alternately.
基金supported by the National High Technology Research and Development of China(Nos.2011AA03A108,2011AA03A105)
文摘We report a new monolithic structure of GaN-based light-emitting diode (LED) which can be operated under high voltage or alternative current. Differing from the conventional single LED chip, the monolithic lightemitting diode (MLED) array contains microchips which are interconnected in series or parallel. The key chip fabrication processing methods of the monolithic LED array include deep dry etching, sidewall insulated protec- tion, and electrode interconnection. A 12 V GaN-based blue high voltage light emitting diode was designed and fabricated in our experiment. The forward current-voltage characteristics of MLEDs were consistent with those of conventional single junction light emitting diodes.