The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma...This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.展开更多
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo...Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.展开更多
Foeusing on high energy consumption of refracto- ties, our research works about monolithic refractories were introduced, such as bauxite-based corundum, mi- cro-porous light-weight bauxite-based clinker, light- weight...Foeusing on high energy consumption of refracto- ties, our research works about monolithic refractories were introduced, such as bauxite-based corundum, mi- cro-porous light-weight bauxite-based clinker, light- weight ahunina-rich spinel, magnesia micropowder, .fast-drying refractory castables of blast furnace, largeare long-life fast-:~intering fling refractories for converter, higlz-strength light-weight mullite castalbles for ladle permanent liner, high-strength and low-conductivity for- sterite- vermiculite insulating board, basic shotcreting castables .for ladle permanent liner, magnesia - ealcia gunning mix for RH refining furnace, and light-weight castables in petrochemical industry.展开更多
如何评价开发的新型材料是否适合在室温磁制冷机中使用,有不同的看法。将最近报道的有影响的磁制冷材料如Gd Si Ge系列合金,La Fe Si系列合金与金属钆进行对比,说明不能仅仅根据等温磁熵变的数据判断它是否适用于磁制冷机中。应该以金...如何评价开发的新型材料是否适合在室温磁制冷机中使用,有不同的看法。将最近报道的有影响的磁制冷材料如Gd Si Ge系列合金,La Fe Si系列合金与金属钆进行对比,说明不能仅仅根据等温磁熵变的数据判断它是否适用于磁制冷机中。应该以金属钆作为室温磁制冷材料的基准材料,全面评定各个新开发的磁制冷材料的绝热温变、使用温度区间、单位体积磁熵变等参数。数据说明,金属钆在综合性能上具有优势,是目前室温磁制冷机主要采用的磁制冷剂。展开更多
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
基金funded by Qin Chuang Yuan Talent Project in Shaanxi Province,China(QCYRCXM-2022-274).
文摘This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.
基金supported by the National Natural Science Foundation of China (Nos. 32071687 and 52273247)Jiangsu Qinglan Project
文摘Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.
文摘Foeusing on high energy consumption of refracto- ties, our research works about monolithic refractories were introduced, such as bauxite-based corundum, mi- cro-porous light-weight bauxite-based clinker, light- weight ahunina-rich spinel, magnesia micropowder, .fast-drying refractory castables of blast furnace, largeare long-life fast-:~intering fling refractories for converter, higlz-strength light-weight mullite castalbles for ladle permanent liner, high-strength and low-conductivity for- sterite- vermiculite insulating board, basic shotcreting castables .for ladle permanent liner, magnesia - ealcia gunning mix for RH refining furnace, and light-weight castables in petrochemical industry.
文摘如何评价开发的新型材料是否适合在室温磁制冷机中使用,有不同的看法。将最近报道的有影响的磁制冷材料如Gd Si Ge系列合金,La Fe Si系列合金与金属钆进行对比,说明不能仅仅根据等温磁熵变的数据判断它是否适用于磁制冷机中。应该以金属钆作为室温磁制冷材料的基准材料,全面评定各个新开发的磁制冷材料的绝热温变、使用温度区间、单位体积磁熵变等参数。数据说明,金属钆在综合性能上具有优势,是目前室温磁制冷机主要采用的磁制冷剂。