Low Carbon Employment is an inevitable choice for the purpose of "energy-saving and emission reduction" and "promoting employment". By Multi-variable Linear Backward Regression method, this study presents an empir...Low Carbon Employment is an inevitable choice for the purpose of "energy-saving and emission reduction" and "promoting employment". By Multi-variable Linear Backward Regression method, this study presents an empirical analysis of the emplovment impact of policy variables indexes that involves economic pull, industry upgrading, population development, technical inputs and so on. The paper demonstrates that wide range offactors will affect low carbon employment, that industry upgrading will affect how carbon employment remarkably, that to increase years of people education will notably improve low carbon employment level of secondary vocational-technical labor, and that to raise technical inputs will significantly enhance college students' low carbon employment.展开更多
The electrochemical nitrogen reduction reaction(NRR)as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism.Herein,phosphorus-doped carbon nanotube(P...The electrochemical nitrogen reduction reaction(NRR)as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism.Herein,phosphorus-doped carbon nanotube(P-CNTs)is developed as an efficient metal-free electrocatalyst for NRR with a remarkable NH3 yield of 24.4μg·h^−1·mg^−1cat.and partial current density of 0.61 mA·cm^−2.Such superior activity is found to be from P doping and highly conjugated CNTs substrate.Experimental and theoretical investigations discover that the electron-deficient phosphorus sites with Lewis acidity should be genuine active sites and NRR on P-CNTs follows the distal pathway.These findings provide insightful understanding on NRR processes on P-CNTs,opening up opportunities for the rational design of highly-active cost-effective metal-free catalysts for electrochemical ammonia synthesis.展开更多
Bathyarchaeota is believed to play a crucial role in the global carbon cycle due to its vast biomass,broad distribution,and diverse habitat.However,its physiological and metabolic features are hard to determine withou...Bathyarchaeota is believed to play a crucial role in the global carbon cycle due to its vast biomass,broad distribution,and diverse habitat.However,its physiological and metabolic features are hard to determine without pure culture.While metagenomic analyses have shown that Bathyarchaeota has a complete inorganic carbon fixation(Wood-Ljungdahl,WL)pathway,no direct functional confirmation has been reported.To explore the inorganic carbon fixation ability of Bathyarchaeota,we used lignin and sodium bicarbonate-^(13)C(NaH^(13)CO_(3))in the long-term incubation of marine sediment samples.We found that Bathyarchaeota grew continuously in the cultivation system with lignin,and its abundance increased up to 15.3 times after10 months,increasing its fraction of all archaea from 30%to 80%.We monitored theδ^(13)C of total organic carbon to identify microbial carbon fixation in the cultivation systems,finding that it increased in the first month while NaH^(13)CO_(3)was present but only increased continuously afterward when lignin was also present.Furthermore,ultracentrifugation was performed on DNA extracted from samples at different cultivation stages to separate DNA of different buoyant densities,and bathyarchaeotal and bacterial 16S ribosomal RNA(r RNA)gene abundance were quantified using qPCR.Compared to bacteria,bathyarchaeotal 16S rRNA tended to be concentrated in heavy layers after 4 months of incubation with lignin and NaH^(13)CO_(3),indicating that Bathyarchaeota DNA contained^(13)C through proliferation based on lignin utilization and NaH^(13)CO_(3)assimilation,proving the carbon fixation capacity of Bathyarchaeota.展开更多
文摘Low Carbon Employment is an inevitable choice for the purpose of "energy-saving and emission reduction" and "promoting employment". By Multi-variable Linear Backward Regression method, this study presents an empirical analysis of the emplovment impact of policy variables indexes that involves economic pull, industry upgrading, population development, technical inputs and so on. The paper demonstrates that wide range offactors will affect low carbon employment, that industry upgrading will affect how carbon employment remarkably, that to increase years of people education will notably improve low carbon employment level of secondary vocational-technical labor, and that to raise technical inputs will significantly enhance college students' low carbon employment.
基金We acknowledge the financial supports are from the National Key Research and Development Program of China(No.2016YFB0101202)the National Natural Science Foundation of China(Nos.91645123,21773263).
文摘The electrochemical nitrogen reduction reaction(NRR)as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism.Herein,phosphorus-doped carbon nanotube(P-CNTs)is developed as an efficient metal-free electrocatalyst for NRR with a remarkable NH3 yield of 24.4μg·h^−1·mg^−1cat.and partial current density of 0.61 mA·cm^−2.Such superior activity is found to be from P doping and highly conjugated CNTs substrate.Experimental and theoretical investigations discover that the electron-deficient phosphorus sites with Lewis acidity should be genuine active sites and NRR on P-CNTs follows the distal pathway.These findings provide insightful understanding on NRR processes on P-CNTs,opening up opportunities for the rational design of highly-active cost-effective metal-free catalysts for electrochemical ammonia synthesis.
基金supported by the State Key R&D Project of China(Grant No.2016YFA0601102)the National Natural Science Foundation of China(Grant Nos.91751205,41525011&41867057)。
文摘Bathyarchaeota is believed to play a crucial role in the global carbon cycle due to its vast biomass,broad distribution,and diverse habitat.However,its physiological and metabolic features are hard to determine without pure culture.While metagenomic analyses have shown that Bathyarchaeota has a complete inorganic carbon fixation(Wood-Ljungdahl,WL)pathway,no direct functional confirmation has been reported.To explore the inorganic carbon fixation ability of Bathyarchaeota,we used lignin and sodium bicarbonate-^(13)C(NaH^(13)CO_(3))in the long-term incubation of marine sediment samples.We found that Bathyarchaeota grew continuously in the cultivation system with lignin,and its abundance increased up to 15.3 times after10 months,increasing its fraction of all archaea from 30%to 80%.We monitored theδ^(13)C of total organic carbon to identify microbial carbon fixation in the cultivation systems,finding that it increased in the first month while NaH^(13)CO_(3)was present but only increased continuously afterward when lignin was also present.Furthermore,ultracentrifugation was performed on DNA extracted from samples at different cultivation stages to separate DNA of different buoyant densities,and bathyarchaeotal and bacterial 16S ribosomal RNA(r RNA)gene abundance were quantified using qPCR.Compared to bacteria,bathyarchaeotal 16S rRNA tended to be concentrated in heavy layers after 4 months of incubation with lignin and NaH^(13)CO_(3),indicating that Bathyarchaeota DNA contained^(13)C through proliferation based on lignin utilization and NaH^(13)CO_(3)assimilation,proving the carbon fixation capacity of Bathyarchaeota.