The titanium coatings were prepared on Al_(2)O_(3) balls by mechanical coating technique (MCT),and then the coatings were oxidized to titanium oxides(TiO_(2)) films at 300-600 ℃.The effects of different milling time ...The titanium coatings were prepared on Al_(2)O_(3) balls by mechanical coating technique (MCT),and then the coatings were oxidized to titanium oxides(TiO_(2)) films at 300-600 ℃.The effects of different milling time and oxidation temperature on thickness of films were studied.The composition and microstructure of the films were analyzed by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS).The results show that the thickest coatings with an average thickness of 20 μm were obtained at the milling time of 15 h.In addition,with the increase of the oxidation temperature,the oxidation of the film is increased.When the milling time is 15 h,the oxidation temperature is 500 ℃,and the addition of photocatalyst is 1 g/mL.The films have the best photocatalytic performance when the degradation rate of methyl orange solution reaches the maximum value of 74.9 %,and the films have a good reusability.展开更多
Sn coatings were fabricated by mechanical coating technique for the first time. The coatings were characterized by XRD and SEM, among others. The SEM showed that the coatings had an irregular and uneven morphology. Th...Sn coatings were fabricated by mechanical coating technique for the first time. The coatings were characterized by XRD and SEM, among others. The SEM showed that the coatings had an irregular and uneven morphology. The influence of the rotation speed of planetary ball mill on the evolution and formation of the coatings was also investigated. The results indicated that continuous Sn coatings can be formed under a moderate rotation speed. In other words, the coatings cannot be formed when rotation speed was too high or too low. The evolution of the coatings was examined and discussed. The results showed that it followed the universal evolution law of metal coatings which included four stages. However, the exfoliation of the coatings was not seen even the milling time reached 30 h.展开更多
TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structu...TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structural applications.To improve the oxidation resistance of a high-Nb-content γ-TiAl alloy(Ti-45 Al-8.5 Nb, in units of at.%), a chromium(Cr)coating is prepared by using the plasma surface alloying technique, separately, at 800℃ and 1000℃. The x-ray diffraction(XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ-TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage(≤ 90 h) and a biquadratic law stage(≥ 90 h), fit by weight–gain curves. Due to diffusion in the fabrication process and oxidation process,the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45 Al-8.5 Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.展开更多
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions...Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.展开更多
A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were ...A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were analyzed. By measuring the change of net-electric current between the two electrodes caused by the change of the amount of oxygen in the solution and the addition of CeCl3, the influence of corrosive performance of CeCl3 on LC4 super-power aluminum "alloy in the 0.1 mol· L^-1 NaCl solution was investigated. Meanwhile, the conditional changes of pH values, CeCl3 solution, additire and time of performance were also studied. Finally, the features of electrode surface were revealed by using SEM and X-ray energy-dispersive spectrometry (EDS). By combining these with other electric chemical techniques, such as potential-time curve, polarization curve et al.展开更多
Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level o...Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.展开更多
This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface pr...This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface preparation, coating application, as well as coating inspection for four types of major production facilities.展开更多
The preparation method of NiMo-RuO2 composite coating, micrographic surface feature and roughness factor of the coating, influence of content of RuO, on electrocatalytic activity, steady-state polarization curves and ...The preparation method of NiMo-RuO2 composite coating, micrographic surface feature and roughness factor of the coating, influence of content of RuO, on electrocatalytic activity, steady-state polarization curves and electrochemical parameters, and stability of the electrode in 30% KOH contaning 10×10-6Fe3+ were repored. Experement results showed the NiMo-RuO2 electrode has more excellent elec-trocatalytic activity and stability than NiMo electrode.展开更多
Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffr...Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, 7-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount ofAl2O3.展开更多
GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique.We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion co...GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique.We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients(TECs)between the film and the substrate.The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films.The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials(e.g.,tungsten,silicon nitride).For each method,we minimize wafer bowing and even reduce it to zero.Moreover,the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.展开更多
Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopt...Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.展开更多
A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's...A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's function method. Then, using Watson transformation and high frequency asymptotic approximate technique to the exact soluton, a UTD soultion is obtained. The radiation field excitedby a monopole is expressed in terms of the compound Fock' S functions (CFF), which reduce to the geomertrical optics result in the deep lit region and the creeping waves in the shadow region.展开更多
This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent ...This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent and di-ethanolamine as a stabilizer, and then deposited on glass substrate using spin coater at the coating speed of 1000 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm and 6000 rpm. After pre-heated at 150℃, the samples were post-heated at 250oC and also annealed at 400℃. X-ray diffraction (XRD) of the films showed polycrystalline hexagonal structure, with (002) orientation as most intense peak having a grain size of 28.1 nm. The absorbance of the film decreases with increasing wavelength and the transmittance was generally high between visible regions from 280 nm - 1200 nm. The ZnO films deposited at a spinning speed of 2000 rpm had highest transmittance of 88% in the visible region from 280 nm - 1200 nm. The energy band gap was found to be in the range of 3.23 - 3.40 eV. The thicknesses of the films decreased with increase in coating speed. Based on these results, ZnO thin films obtained could have useful application in transparent conducting oxide electrode in solar cells.展开更多
Objective of this study was to develope low temperature sol-gel coatings for shape memory metal (NiTi) and evaluate their biocompatibility on NiTi suture material. A series of low temperature TiO2 and TiO2-SiO2 sol-ge...Objective of this study was to develope low temperature sol-gel coatings for shape memory metal (NiTi) and evaluate their biocompatibility on NiTi suture material. A series of low temperature TiO2 and TiO2-SiO2 sol-gel coatings were prepared on glass substrates. The silica content of TiO2-SiO2 coatings ranged from 0 to 30 mol%. The coatings were also prepared with polyethyleneglycol (PEG). The contact angle and photocatalytic activity measurements were used to evaluate the surface properties of the coatings. Stability of the coatings was tested in simulated body fluid (SBF). The TiO2-SiO2 90/10 film made with PEG was more hydrophilic, showed photocatalytic activity and was crack-free after the SBF test, thus it was chosen to animal experiment as a new experimental coating. Uncoated NiTi suture and the suture coated with high temperature TiO2 were used as reference materials. NiTi sutures were inserted subcutaneously on the back of rat for four weeks. In routine histological examinations all materials showed good biocompatibility with mild inflammatory cell reaction. No significant differences in the soft tissue response among the materials were observed. Both the high and new low temperature processed sol-gel coatings remained attached on the sutures confirming the suitability of the coating technique on thin NiTi sutures.展开更多
A slurry dip-coating technique was developed for fabrication of Zr02/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by...A slurry dip-coating technique was developed for fabrication of Zr02/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.展开更多
基金Funded by University-level Project of Jincheng College of Sichuan University(No.2020jcky0014)。
文摘The titanium coatings were prepared on Al_(2)O_(3) balls by mechanical coating technique (MCT),and then the coatings were oxidized to titanium oxides(TiO_(2)) films at 300-600 ℃.The effects of different milling time and oxidation temperature on thickness of films were studied.The composition and microstructure of the films were analyzed by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS).The results show that the thickest coatings with an average thickness of 20 μm were obtained at the milling time of 15 h.In addition,with the increase of the oxidation temperature,the oxidation of the film is increased.When the milling time is 15 h,the oxidation temperature is 500 ℃,and the addition of photocatalyst is 1 g/mL.The films have the best photocatalytic performance when the degradation rate of methyl orange solution reaches the maximum value of 74.9 %,and the films have a good reusability.
文摘Sn coatings were fabricated by mechanical coating technique for the first time. The coatings were characterized by XRD and SEM, among others. The SEM showed that the coatings had an irregular and uneven morphology. The influence of the rotation speed of planetary ball mill on the evolution and formation of the coatings was also investigated. The results indicated that continuous Sn coatings can be formed under a moderate rotation speed. In other words, the coatings cannot be formed when rotation speed was too high or too low. The evolution of the coatings was examined and discussed. The results showed that it followed the universal evolution law of metal coatings which included four stages. However, the exfoliation of the coatings was not seen even the milling time reached 30 h.
基金Project supported by the National Natural Science Foundation of China(Grant No.51601122)the 2019–2020 Intergovernmental Cooperation Projects in Science and Technology of the Ministry of Science and Technology,China(Grant No.CB02-03)+3 种基金the Science and Technology Major Project of Shanxi Province,China(Grant No.20181102013)the“331 Project”Engineering Research Center of Shanxi Province,China(Grant No.PT201801)the China Postdoctoral Science Foundation(Grant No.2017M620574)the Fund from the State Key Laboratory of Advanced Metal Materials,China(Grant No.2019-ZD02).
文摘TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structural applications.To improve the oxidation resistance of a high-Nb-content γ-TiAl alloy(Ti-45 Al-8.5 Nb, in units of at.%), a chromium(Cr)coating is prepared by using the plasma surface alloying technique, separately, at 800℃ and 1000℃. The x-ray diffraction(XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ-TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage(≤ 90 h) and a biquadratic law stage(≥ 90 h), fit by weight–gain curves. Due to diffusion in the fabrication process and oxidation process,the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45 Al-8.5 Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject supported by Research Program of Excellent Scholars Studying Abroad of Ministry of Human Resources and Social Security,China
文摘Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.
文摘A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were analyzed. By measuring the change of net-electric current between the two electrodes caused by the change of the amount of oxygen in the solution and the addition of CeCl3, the influence of corrosive performance of CeCl3 on LC4 super-power aluminum "alloy in the 0.1 mol· L^-1 NaCl solution was investigated. Meanwhile, the conditional changes of pH values, CeCl3 solution, additire and time of performance were also studied. Finally, the features of electrode surface were revealed by using SEM and X-ray energy-dispersive spectrometry (EDS). By combining these with other electric chemical techniques, such as potential-time curve, polarization curve et al.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA03Z103)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China (Grant No. [2006]331)
文摘Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.
文摘This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface preparation, coating application, as well as coating inspection for four types of major production facilities.
文摘The preparation method of NiMo-RuO2 composite coating, micrographic surface feature and roughness factor of the coating, influence of content of RuO, on electrocatalytic activity, steady-state polarization curves and electrochemical parameters, and stability of the electrode in 30% KOH contaning 10×10-6Fe3+ were repored. Experement results showed the NiMo-RuO2 electrode has more excellent elec-trocatalytic activity and stability than NiMo electrode.
基金National Natural Science Foundation of China (50171026)
文摘Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, 7-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount ofAl2O3.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10872003,10932001 and 61006035the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No 2007B2+1 种基金the Research Fund for the New Teacher Program of the State Education Ministry of China under Grant No 200800011011the Scientific Research Foundation for the Returned Overseas Chinese Scholars State Education Ministry of China,and China Postdoctoral Science Foundation under Grant No 20090460168.
文摘GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique.We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients(TECs)between the film and the substrate.The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films.The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials(e.g.,tungsten,silicon nitride).For each method,we minimize wafer bowing and even reduce it to zero.Moreover,the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.
基金supported by National Natural Science Foundation of China(81202476)Medical Research Foundation of Guangdong Province(B2012079).
文摘Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.
文摘A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's function method. Then, using Watson transformation and high frequency asymptotic approximate technique to the exact soluton, a UTD soultion is obtained. The radiation field excitedby a monopole is expressed in terms of the compound Fock' S functions (CFF), which reduce to the geomertrical optics result in the deep lit region and the creeping waves in the shadow region.
文摘This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent and di-ethanolamine as a stabilizer, and then deposited on glass substrate using spin coater at the coating speed of 1000 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm and 6000 rpm. After pre-heated at 150℃, the samples were post-heated at 250oC and also annealed at 400℃. X-ray diffraction (XRD) of the films showed polycrystalline hexagonal structure, with (002) orientation as most intense peak having a grain size of 28.1 nm. The absorbance of the film decreases with increasing wavelength and the transmittance was generally high between visible regions from 280 nm - 1200 nm. The ZnO films deposited at a spinning speed of 2000 rpm had highest transmittance of 88% in the visible region from 280 nm - 1200 nm. The energy band gap was found to be in the range of 3.23 - 3.40 eV. The thicknesses of the films decreased with increase in coating speed. Based on these results, ZnO thin films obtained could have useful application in transparent conducting oxide electrode in solar cells.
基金supported in part by the National Technology Agency of Finland(40222/05,40171/06)supported by the Biomaterial and Tissue Engineering Graduate School in Finland
文摘Objective of this study was to develope low temperature sol-gel coatings for shape memory metal (NiTi) and evaluate their biocompatibility on NiTi suture material. A series of low temperature TiO2 and TiO2-SiO2 sol-gel coatings were prepared on glass substrates. The silica content of TiO2-SiO2 coatings ranged from 0 to 30 mol%. The coatings were also prepared with polyethyleneglycol (PEG). The contact angle and photocatalytic activity measurements were used to evaluate the surface properties of the coatings. Stability of the coatings was tested in simulated body fluid (SBF). The TiO2-SiO2 90/10 film made with PEG was more hydrophilic, showed photocatalytic activity and was crack-free after the SBF test, thus it was chosen to animal experiment as a new experimental coating. Uncoated NiTi suture and the suture coated with high temperature TiO2 were used as reference materials. NiTi sutures were inserted subcutaneously on the back of rat for four weeks. In routine histological examinations all materials showed good biocompatibility with mild inflammatory cell reaction. No significant differences in the soft tissue response among the materials were observed. Both the high and new low temperature processed sol-gel coatings remained attached on the sutures confirming the suitability of the coating technique on thin NiTi sutures.
文摘A slurry dip-coating technique was developed for fabrication of Zr02/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.