In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking....In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.展开更多
Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path pl...Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path planning algorithm-Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer,Particle swarm optimization(PSO),for fine-tuning and enhancement.In Phase 1,the start and goal trees are initialized at the starting and goal positions,respectively,and the intermediary tree is initialized at a random unexplored region of the search space.The trees were grown until one met the other and then merged and re-initialized in other unexplored regions.If the start and goal trees merge,the first solution is found and passed through a minimization process to reduce unnecessary nodes.Phase 2 begins by feeding the minimized solution from Phase 1 as the global best particle of PSO to optimize the path.After simulating two special benchmark configurations and six practice configurations with special cases,the results of the study concluded that the proposed method is capable of handling small to large,simple to complex continuous environments,whereas it was very tedious for the previous method to achieve.展开更多
It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion ...It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper.Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability,a rollover dynamics model is built for the intelligent heavy truck.From the model,a novel rollover index is derived to evaluate vehicle rollover risk accurately,and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck,which integrates the vehicle rollover stability,the artificial potential field for the obstacle avoidance,the path tracking and vehicle dynamics constrains.Then,the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover.In addition,three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck.The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.展开更多
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance...Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62001199Fujian Province Nature Science Foundation under Grant No.2023J01925.
文摘In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.
基金funded by International University,VNU-HCM under Grant Number T2021-02-IEM.
文摘Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path planning algorithm-Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer,Particle swarm optimization(PSO),for fine-tuning and enhancement.In Phase 1,the start and goal trees are initialized at the starting and goal positions,respectively,and the intermediary tree is initialized at a random unexplored region of the search space.The trees were grown until one met the other and then merged and re-initialized in other unexplored regions.If the start and goal trees merge,the first solution is found and passed through a minimization process to reduce unnecessary nodes.Phase 2 begins by feeding the minimized solution from Phase 1 as the global best particle of PSO to optimize the path.After simulating two special benchmark configurations and six practice configurations with special cases,the results of the study concluded that the proposed method is capable of handling small to large,simple to complex continuous environments,whereas it was very tedious for the previous method to achieve.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775269,U1964203,52072215)National Key R&D Program of China(Grant No.2020YFB1600303).
文摘It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper.Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability,a rollover dynamics model is built for the intelligent heavy truck.From the model,a novel rollover index is derived to evaluate vehicle rollover risk accurately,and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck,which integrates the vehicle rollover stability,the artificial potential field for the obstacle avoidance,the path tracking and vehicle dynamics constrains.Then,the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover.In addition,three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck.The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.
基金supported by National Natural Science Foundation of China(Grant No. 51275047)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing of China(Grant No. 07205)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20091101110010)
文摘Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.