In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-sto...This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-stop data at different wind speeds, the weighting coefficients, which are the participation degrees of a variable speed system and a variable pitch system in power regulation, are obtained using the grey incidence method. The incidence coefficient curve is fitted by the B-spline function at a full range of wind speeds, and the power regulation capacity of all wind turbines is obtained. Finally, the WFAPD algorithm, which is based on the regulating capacity of each wind turbine, is compared with the wind speed weighting power dispatching(WSWPD) algorithm in MATLAB. The simulation results show that the active power fluctuation of the wind farm is smaller, the rotating speed of wind turbines is smoother, and the fatigue load of highspeed turbines is effectively reduced.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri...Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.展开更多
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system...Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.展开更多
Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper an...Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
The dispatching center of power-grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid...The dispatching center of power-grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management, but at present there is no special method for the management of operating data resource. This paper introduces the operating analysis and data mining system for power grid dispatching. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. This analysis system is based on the real-time data of the power grid to dig out the potential rule of the power grid operating. This system also provides a research platform for the dispatchers, help to improve the JIT (Just in Time) management of power system.展开更多
This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical...This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical requirement of dispatching. Then it brings forward the intelligent optimization model and set up running model for pumped storage power station of Hei Mi-feng. At last, it introduces the application of pumped storage power station in Hunan power grid and proves the effectiveness of the optimization models.展开更多
With the development and application of energy Internet technology,the collaborative interaction of“source network,load and storage”has becomethe development trend of power grid dispatching.The large-scale access of...With the development and application of energy Internet technology,the collaborative interaction of“source network,load and storage”has becomethe development trend of power grid dispatching.The large-scale access of renewableenergy on the load side,the unified management of adjustable loads,and theparticipation of multiple parties in energy operations have put forward requirementsfor the safety,credibility,openness,and transparency of the load dispatchingenvironment.Under the environment of carbon emission reduction,the paperproposed an architecture of the scheduling data blockchain,based on the in-depthstudy of blockchain.Moreover,smart contracts are used to realize the applicationscenario of load dispatching instruction evidence on the blockchain.The contentand storage mode of scheduling instruction evidence on blockchain are studied.And different storage modes are adopted according to the actual needs.Andthe smart contract system realizes the evidence generation of power dispatchinginstruction.This is the basis for the normal circulation of power dispatchinginstruction evidence.The research significance of this paper is highlighted as follows.The data and information generated in the power dispatching process arestored as evidence.On the one hand,it can provide a basis for settlement betweenpower production and dispatching companies and power users.On the other hand,it can prepare for distributed transactions in the power grid under the environmentof carbon emission reduction.展开更多
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t...For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.展开更多
In this study, an off grid wind-solar hybrid power generation system was established at Afyon Kocatepe University to meet the energy need of lighting system of three different laboratories. It is planned to efficientl...In this study, an off grid wind-solar hybrid power generation system was established at Afyon Kocatepe University to meet the energy need of lighting system of three different laboratories. It is planned to efficiently use the energy obtained from the designed hybrid power generation system. For this purpose, PIC 16F877 was used in controlling of lighting load of laboratories. The off-grid wind-solar hybrid power generation system consists of 570 W 24 V mono crystal solar panels, 600 W wind power generation system and accumulator groups. The load control circuit made with PIC 16F877 is designed in a manner that will control the lighting armature groups individually activate and deactivate the armature groups according to intensity of illumination in environment. Besides, separately from generation and storing units constituting the hybrid power generation system, data in kWh are recorded by means of software in 10 seconds intervals. With the obtained power generation and storing data, analyzing of power consumption data when the load control system in active or passive position is made. According to analysis results, with controlling of lighting load and using of energy obtained from off grid wind-solar hybrid power generation system, 20.6% energy saving has been ensured.展开更多
With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,whic...With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.展开更多
The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleann...The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.展开更多
Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus,the need for developing and applying new intelligent power...Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus,the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm,namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complex power grids,extend system operators' capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
基金supported by the Special Scientific Research Project of the Shaanxi Provincial Education Department (22JK0414)。
文摘This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-stop data at different wind speeds, the weighting coefficients, which are the participation degrees of a variable speed system and a variable pitch system in power regulation, are obtained using the grey incidence method. The incidence coefficient curve is fitted by the B-spline function at a full range of wind speeds, and the power regulation capacity of all wind turbines is obtained. Finally, the WFAPD algorithm, which is based on the regulating capacity of each wind turbine, is compared with the wind speed weighting power dispatching(WSWPD) algorithm in MATLAB. The simulation results show that the active power fluctuation of the wind farm is smaller, the rotating speed of wind turbines is smoother, and the fatigue load of highspeed turbines is effectively reduced.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
基金National Natural Science Foundation of China,Grant/Award Number:51677059。
文摘Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.
文摘Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
文摘The dispatching center of power-grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management, but at present there is no special method for the management of operating data resource. This paper introduces the operating analysis and data mining system for power grid dispatching. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. This analysis system is based on the real-time data of the power grid to dig out the potential rule of the power grid operating. This system also provides a research platform for the dispatchers, help to improve the JIT (Just in Time) management of power system.
文摘This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical requirement of dispatching. Then it brings forward the intelligent optimization model and set up running model for pumped storage power station of Hei Mi-feng. At last, it introduces the application of pumped storage power station in Hunan power grid and proves the effectiveness of the optimization models.
基金supported by Science and Technology Program of State Grid Corporation of China under Grant(No.5100-202155319A-0-0-00).
文摘With the development and application of energy Internet technology,the collaborative interaction of“source network,load and storage”has becomethe development trend of power grid dispatching.The large-scale access of renewableenergy on the load side,the unified management of adjustable loads,and theparticipation of multiple parties in energy operations have put forward requirementsfor the safety,credibility,openness,and transparency of the load dispatchingenvironment.Under the environment of carbon emission reduction,the paperproposed an architecture of the scheduling data blockchain,based on the in-depthstudy of blockchain.Moreover,smart contracts are used to realize the applicationscenario of load dispatching instruction evidence on the blockchain.The contentand storage mode of scheduling instruction evidence on blockchain are studied.And different storage modes are adopted according to the actual needs.Andthe smart contract system realizes the evidence generation of power dispatchinginstruction.This is the basis for the normal circulation of power dispatchinginstruction evidence.The research significance of this paper is highlighted as follows.The data and information generated in the power dispatching process arestored as evidence.On the one hand,it can provide a basis for settlement betweenpower production and dispatching companies and power users.On the other hand,it can prepare for distributed transactions in the power grid under the environmentof carbon emission reduction.
文摘For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.
基金supported by grant number 10-TEF-05 from Afyon Kocatepe University Scientific Research Projects Coordination Unit.
文摘In this study, an off grid wind-solar hybrid power generation system was established at Afyon Kocatepe University to meet the energy need of lighting system of three different laboratories. It is planned to efficiently use the energy obtained from the designed hybrid power generation system. For this purpose, PIC 16F877 was used in controlling of lighting load of laboratories. The off-grid wind-solar hybrid power generation system consists of 570 W 24 V mono crystal solar panels, 600 W wind power generation system and accumulator groups. The load control circuit made with PIC 16F877 is designed in a manner that will control the lighting armature groups individually activate and deactivate the armature groups according to intensity of illumination in environment. Besides, separately from generation and storing units constituting the hybrid power generation system, data in kWh are recorded by means of software in 10 seconds intervals. With the obtained power generation and storing data, analyzing of power consumption data when the load control system in active or passive position is made. According to analysis results, with controlling of lighting load and using of energy obtained from off grid wind-solar hybrid power generation system, 20.6% energy saving has been ensured.
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.
基金supported by the National Key R&D Program of China(No.2021YFB2401200).
文摘The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.
基金supported by State Grid Corporation of China(SGCC)Science and Technology Project SGTJDK00DWJS1700060
文摘Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus,the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm,namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complex power grids,extend system operators' capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.