Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless senso...Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.展开更多
Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vec...Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.展开更多
Reputation mechanism has been recently introduced into wireless sensor networks(WSNs) to overcome the deficiencies incurred by cryptography alone.Unlike most current reputation mechanisms that are based on binomial di...Reputation mechanism has been recently introduced into wireless sensor networks(WSNs) to overcome the deficiencies incurred by cryptography alone.Unlike most current reputation mechanisms that are based on binomial distribution and to some extent,do not give due attention to the aspect of energy constraint of WSNs,this research deduces and proves the feasibility that negative binomial distribution can well be used in the reputation update with distinctive energy-saving features.Comparison tests with respect to the energy consumption in terms of reputation computing frequencies are done between the traditional reputation method and the one in this study.Results show that our method can save more energy for the reputation update and thus can better meet the power constraints of WSNs.展开更多
The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to e...The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to enhance the robustness of DDSE to measurement outliers,approximate the target distribution of Metropolis-Hastings(MH)sampling,and judge the prediction of the long short-term memory(LSTM)network,this paper proposes an outlier reconstruction based state estimation method using the equivalent model of the LSTM network and MH sampling(E-LM model),motivated by the characteristics of the chronological correlations of PMU measurements.First,the target distribution of outlier reconstruction is derived using a kernel density estimation function.Subsequently,the reasons and advantages of the E-LM model are explained and analyzed from a mathematical point of view.The proposed LSTM-based MH sampling can approximate the target distribution of MH sampling to decrease the number of the futile iterations.Moreover,the proposed MH-based forecasting of the LSTM can judge each LSTM prediction,which is independent of its true value.Finally,simulations are conducted to evaluate the performance of the E-LM model by integrating the LSTM network and the MH sampling into the outlier reconstruction based DDSE.展开更多
Fault section location of a single-phase grounding fault is affected by the neutral grounding mode of the system, transition resistance, and the blind zone. A fault section locating method based on an amplitude featur...Fault section location of a single-phase grounding fault is affected by the neutral grounding mode of the system, transition resistance, and the blind zone. A fault section locating method based on an amplitude feature and an intelligent distance algorithm is proposed to eliminate the influence of the above factors. By analyzing and comparing the amplitude characteristics of the zero-sequence current transient components at both ends of the healthy section and the faulty section, a distance algorithm with strong abnormal data immune capability is introduced in this paper. The matching degree of the amplitude characteristics at both ends of the feeder section are used as the criterion and by comparing with the set threshold, the faulty section is effectively determined. Finally, simulations using Matlab/Simulink and PSCAD/EMTDC show that the proposed section locating method can locate the faulty section accurately, and is not affected by grounding mode, grounding resistance, or the blind zone.展开更多
Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induce...Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing.To address this issue,we propose a deep learning(DL)model based on conditional Generative Adversarial Networks(cGANs)to improve the quality of nonhomogeneous shear modulus reconstruction.To train this model,we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution.Both the simulated and experimental displacement fields are used to validate the proposed method.The reconstructed results demonstrate that the DL model with synthetic training data is able to improve the quality of the reconstruction compared with the well-established optimization method.Moreover,we emphasize that our DL model is only trained on synthetic data.This might provide a way to alleviate the challenge of obtaining clinical or experimental data in elastography.Overall,this work addresses several fatal issues in applying the DL technique into elastography,and the proposed method has shown great potential in improving the accuracy of the disease diagnosis in clinical medicine.展开更多
文摘Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.
基金supported in part by Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)State Key Program of National Natural Science Foundation of China under Grant(No.U1866210)Natural Science Foundation of Guangdong Province(No.2022A1515011587).
文摘Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.
基金the National Natural Science Foundation of China(No.60905037)
文摘Reputation mechanism has been recently introduced into wireless sensor networks(WSNs) to overcome the deficiencies incurred by cryptography alone.Unlike most current reputation mechanisms that are based on binomial distribution and to some extent,do not give due attention to the aspect of energy constraint of WSNs,this research deduces and proves the feasibility that negative binomial distribution can well be used in the reputation update with distinctive energy-saving features.Comparison tests with respect to the energy consumption in terms of reputation computing frequencies are done between the traditional reputation method and the one in this study.Results show that our method can save more energy for the reputation update and thus can better meet the power constraints of WSNs.
基金supported by the National Key Research and Development Program(No.2017YFB0902900).
文摘The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to enhance the robustness of DDSE to measurement outliers,approximate the target distribution of Metropolis-Hastings(MH)sampling,and judge the prediction of the long short-term memory(LSTM)network,this paper proposes an outlier reconstruction based state estimation method using the equivalent model of the LSTM network and MH sampling(E-LM model),motivated by the characteristics of the chronological correlations of PMU measurements.First,the target distribution of outlier reconstruction is derived using a kernel density estimation function.Subsequently,the reasons and advantages of the E-LM model are explained and analyzed from a mathematical point of view.The proposed LSTM-based MH sampling can approximate the target distribution of MH sampling to decrease the number of the futile iterations.Moreover,the proposed MH-based forecasting of the LSTM can judge each LSTM prediction,which is independent of its true value.Finally,simulations are conducted to evaluate the performance of the E-LM model by integrating the LSTM network and the MH sampling into the outlier reconstruction based DDSE.
基金supporting by the National Natural Science Foundation of China(52077120)Research Fund for Excellent Dissertation of China Three Gorges University(2021SSPY056).
文摘Fault section location of a single-phase grounding fault is affected by the neutral grounding mode of the system, transition resistance, and the blind zone. A fault section locating method based on an amplitude feature and an intelligent distance algorithm is proposed to eliminate the influence of the above factors. By analyzing and comparing the amplitude characteristics of the zero-sequence current transient components at both ends of the healthy section and the faulty section, a distance algorithm with strong abnormal data immune capability is introduced in this paper. The matching degree of the amplitude characteristics at both ends of the feeder section are used as the criterion and by comparing with the set threshold, the faulty section is effectively determined. Finally, simulations using Matlab/Simulink and PSCAD/EMTDC show that the proposed section locating method can locate the faulty section accurately, and is not affected by grounding mode, grounding resistance, or the blind zone.
基金National Natural Science Foundation of China (12002075)National Key Research and Development Project (2021YFB3300601)Natural Science Foundation of Liaoning Province in China (2021-MS-128).
文摘Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing.To address this issue,we propose a deep learning(DL)model based on conditional Generative Adversarial Networks(cGANs)to improve the quality of nonhomogeneous shear modulus reconstruction.To train this model,we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution.Both the simulated and experimental displacement fields are used to validate the proposed method.The reconstructed results demonstrate that the DL model with synthetic training data is able to improve the quality of the reconstruction compared with the well-established optimization method.Moreover,we emphasize that our DL model is only trained on synthetic data.This might provide a way to alleviate the challenge of obtaining clinical or experimental data in elastography.Overall,this work addresses several fatal issues in applying the DL technique into elastography,and the proposed method has shown great potential in improving the accuracy of the disease diagnosis in clinical medicine.