Herein,we propose a novel three-phase quasi-Z-source inverter with a high voltage transmission ratio to address challenges such as high switching loss and sizeable magnetic components in the basic quasi-Z-source inver...Herein,we propose a novel three-phase quasi-Z-source inverter with a high voltage transmission ratio to address challenges such as high switching loss and sizeable magnetic components in the basic quasi-Z-source inverter.The proposed circuit topology,control strategy,and related analysis are presented.The circuit topology of the inverter comprises a quasi-Z-source network with an integrated magnetic inductor,an active clamp circuit,a three-phase inverter bridge,and an output LC filter,all of which are connected in series.An improved 12-sector space vector modulation scheme is proposed based on the root-mean-square value of the voltage and the instantaneous value of the current.Furthermore,analyses of the inverter voltage transmission ratio,resonant process,and parametric design guidelines for integrated magnetic inductor and zero-voltage switching conditions are presented.Experimental results on a 1-kVA prototype inverter demonstrate that the proposed inverter exhibits a higher transmission ratio and efficiency than existing inverters;thus,the proposed inverter would have broad prospects in low-voltage DC-AC applications.展开更多
The inherent double-line frequency ripple(DFR)of the single-phase quasi-Z-Source inverter(qZSI)strongly affects performance and design of the whole system,which requires hardware improvement methods such as additional...The inherent double-line frequency ripple(DFR)of the single-phase quasi-Z-Source inverter(qZSI)strongly affects performance and design of the whole system,which requires hardware improvement methods such as additional semiconductor components or increasing the volume of capacitors and inductors.As a result,hardware solutions increase the price,and the volume and also reduces reliability of the system.In this paper,as a non-hardware solution,a sliding mode control(SMC)method is presented to control the voltage of the qZSI capacitor.To suppress the DFR,a second-order harmonic is injected into the capacitor reference voltage.Simulation and experimental results show that the introduced controller will have satisfactory results in reducing the DFR without any hardware changes in the qZSI,such as increasing the volume of the capacitor and inductor,adding a semiconductor,or increasing the frequency.A simulation model and experimental prototype are provided to demonstrate the validation of the effectiveness of the proposed controller.展开更多
基金the National Natural Science Foundation of China(Grant No.51537001)Fund of“Taishan Scholar”Climbing Plan of Shandong Province,China。
文摘Herein,we propose a novel three-phase quasi-Z-source inverter with a high voltage transmission ratio to address challenges such as high switching loss and sizeable magnetic components in the basic quasi-Z-source inverter.The proposed circuit topology,control strategy,and related analysis are presented.The circuit topology of the inverter comprises a quasi-Z-source network with an integrated magnetic inductor,an active clamp circuit,a three-phase inverter bridge,and an output LC filter,all of which are connected in series.An improved 12-sector space vector modulation scheme is proposed based on the root-mean-square value of the voltage and the instantaneous value of the current.Furthermore,analyses of the inverter voltage transmission ratio,resonant process,and parametric design guidelines for integrated magnetic inductor and zero-voltage switching conditions are presented.Experimental results on a 1-kVA prototype inverter demonstrate that the proposed inverter exhibits a higher transmission ratio and efficiency than existing inverters;thus,the proposed inverter would have broad prospects in low-voltage DC-AC applications.
文摘The inherent double-line frequency ripple(DFR)of the single-phase quasi-Z-Source inverter(qZSI)strongly affects performance and design of the whole system,which requires hardware improvement methods such as additional semiconductor components or increasing the volume of capacitors and inductors.As a result,hardware solutions increase the price,and the volume and also reduces reliability of the system.In this paper,as a non-hardware solution,a sliding mode control(SMC)method is presented to control the voltage of the qZSI capacitor.To suppress the DFR,a second-order harmonic is injected into the capacitor reference voltage.Simulation and experimental results show that the introduced controller will have satisfactory results in reducing the DFR without any hardware changes in the qZSI,such as increasing the volume of the capacitor and inductor,adding a semiconductor,or increasing the frequency.A simulation model and experimental prototype are provided to demonstrate the validation of the effectiveness of the proposed controller.