In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and ...In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and disturbance of non-flame phenomena further more, the average changing pixel number of the first-order moments of consecutive flames has been defined in the moment analysis as well. The first-order moments of all kinds of flames used in our experiments present irregularly flickering, and their average changing pixel numbers of first-order moments are greater than fire-like disturbances. For the analysis of flicker frequency of flame, which is extracted and calculated in spatial domain, and therefore it is computational simple and fast. The method of extracting flicker frequency from video images is not affected by the catalogues of combustion material and distance. In experiments, we adopted two kinds of flames, i. e. , fixed flame and movable flame. Many comparing and disturbing experiments were done and verified that the methods can be used as criteria for early fire detection.展开更多
The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while...The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.展开更多
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin...The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.展开更多
The paper addresses the problem of target recognition using High-resolution Radar Range Profiles(HRRP).A novel approach of feature extraction and dimension reduction based on extended high order central moments is pro...The paper addresses the problem of target recognition using High-resolution Radar Range Profiles(HRRP).A novel approach of feature extraction and dimension reduction based on extended high order central moments is proposed in order to reduce the dimension of range profiles.Features extracted from radar HRRPs are normalized and smoothed,and then comparative analysis of the similar approaches is done.The range profiles are obtained by step frequency technique using the two-dimensional backscatters distribution data of four different aircraft models.The template matching method by nearest neighbor rules,which is based on the theory of kernel methods for pattern analysis,is used to classify and identify the range profiles from four different aircrafts.Numerical simulation results show that the proposed approach can achieve good performance of stability,shift independence and higher recognition rate.It is helpful for real-time identification and the engineering implements of automatic target recognition using HRRP.The number of required templates could be reduced con-siderably while maintaining an equivalent recognition rate.展开更多
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea...Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.展开更多
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
以林语堂原创小说Moment in Peking无本回译为研究对象,基于英汉双语平行语料库,立足文化调适视角,考察分析了Moment in Peking无本回译的语言特征和翻译策略选择。结果显示:在词汇层面,无本回译作品的整体用词比原作丰富多样;在句法层...以林语堂原创小说Moment in Peking无本回译为研究对象,基于英汉双语平行语料库,立足文化调适视角,考察分析了Moment in Peking无本回译的语言特征和翻译策略选择。结果显示:在词汇层面,无本回译作品的整体用词比原作丰富多样;在句法层面,无本回译作品表现出句法简略化特征;在语篇层面,无本回译作品以原作为依归,注重小说主题复现;在副文本层面,无本回译作品颇具创造性,为本位文化读者解读译者的翻译思想和主体性发挥提供助力。在无本回译策略选择上,同化和整合策略指导下的无本回译倾向归化翻译;分离策略指导下的无本回译倾向异化翻译,边缘化策略体现不明显。展开更多
Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is...Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.展开更多
In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, firs...In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.展开更多
This paper is a study on texture analysis of Computer Tomography (CT) liver images using orthogonal moment features. Orthogonal moments are used as image feature representation in many applications like invariant patt...This paper is a study on texture analysis of Computer Tomography (CT) liver images using orthogonal moment features. Orthogonal moments are used as image feature representation in many applications like invariant pattern recognition of images. Orthogonal moments are proposed here for the diagnosis of any abnormalities on the CT images. The objective of the proposed work is to carry out the comparative study of the performance of orthogonal moments like Zernike, Racah and Legendre moments for the detection of abnormal tissue on CT liver images. The Region of Interest (ROI) based segmentation and watershed segmentation are applied to the input image and the features are extracted with the orthogonal moments and analyses are made with the combination of orthogonal moment with segmentation that provides better accuracy while detecting the tumor. This computational model is tested with many inputs and the performance of the orthogonal moments with segmentation for the texture analysis of CT scan images is computed and compared.展开更多
The feature extraction and pattern recognition techniques are of great importance to assess the insulation condition of gas-insulated switchgear.In this work,the ultra-high-frequency partial discharge(PD)signals gener...The feature extraction and pattern recognition techniques are of great importance to assess the insulation condition of gas-insulated switchgear.In this work,the ultra-high-frequency partial discharge(PD)signals generated from four types of typical insulation defects are analysed using S-transform,and the greyscale image in time-frequency representation is divided into five regions according to the cutoff frequencies of TEm1 modes.Then,the three low-order moments of every subregion are extracted and the feature selection is performed based on the J criterion.To confirm the effectiveness of selected moment features after considering the electromagnetic modes,the support vector machine,k-nearest neighbour and particle swarm-optimised extreme learning machine(ELM)are utilised to classify the type of PD,and they achieve the recognition accuracies of 92,88.5 and 95%,respectively.In addition,the results show that the ELM offers good generalisation performance at the fastest learning and testing speeds,thus more suitable for a real-time PD detection.展开更多
基金Supported by " Experimental Scale Studies in Smoke Control Strategy in Large Linear Atria in HKSAR" (B Q372)
文摘In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and disturbance of non-flame phenomena further more, the average changing pixel number of the first-order moments of consecutive flames has been defined in the moment analysis as well. The first-order moments of all kinds of flames used in our experiments present irregularly flickering, and their average changing pixel numbers of first-order moments are greater than fire-like disturbances. For the analysis of flicker frequency of flame, which is extracted and calculated in spatial domain, and therefore it is computational simple and fast. The method of extracting flicker frequency from video images is not affected by the catalogues of combustion material and distance. In experiments, we adopted two kinds of flames, i. e. , fixed flame and movable flame. Many comparing and disturbing experiments were done and verified that the methods can be used as criteria for early fire detection.
文摘The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.
基金the National Natural Science Foundation of China (60303029)
文摘The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.
文摘The paper addresses the problem of target recognition using High-resolution Radar Range Profiles(HRRP).A novel approach of feature extraction and dimension reduction based on extended high order central moments is proposed in order to reduce the dimension of range profiles.Features extracted from radar HRRPs are normalized and smoothed,and then comparative analysis of the similar approaches is done.The range profiles are obtained by step frequency technique using the two-dimensional backscatters distribution data of four different aircraft models.The template matching method by nearest neighbor rules,which is based on the theory of kernel methods for pattern analysis,is used to classify and identify the range profiles from four different aircrafts.Numerical simulation results show that the proposed approach can achieve good performance of stability,shift independence and higher recognition rate.It is helpful for real-time identification and the engineering implements of automatic target recognition using HRRP.The number of required templates could be reduced con-siderably while maintaining an equivalent recognition rate.
基金supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2022 Yeungnam University Research Grant.
文摘Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
基金国家社科基金项目“文化自觉视野下中国题材异语作品无本回译研究”(16BYY011)浙江省教育厅高校境外培训教师专业发展项目(JW2017002)台州学院校立科研培育项目“文化调适视域下Moment in Peking无本回译研究”(2018PY004)。
文摘以林语堂原创小说Moment in Peking无本回译为研究对象,基于英汉双语平行语料库,立足文化调适视角,考察分析了Moment in Peking无本回译的语言特征和翻译策略选择。结果显示:在词汇层面,无本回译作品的整体用词比原作丰富多样;在句法层面,无本回译作品表现出句法简略化特征;在语篇层面,无本回译作品以原作为依归,注重小说主题复现;在副文本层面,无本回译作品颇具创造性,为本位文化读者解读译者的翻译思想和主体性发挥提供助力。在无本回译策略选择上,同化和整合策略指导下的无本回译倾向归化翻译;分离策略指导下的无本回译倾向异化翻译,边缘化策略体现不明显。
基金supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant No.0719
文摘Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.
基金Project (No. 60573146) supported by the National Natural Science Foundation of China
文摘In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.
文摘This paper is a study on texture analysis of Computer Tomography (CT) liver images using orthogonal moment features. Orthogonal moments are used as image feature representation in many applications like invariant pattern recognition of images. Orthogonal moments are proposed here for the diagnosis of any abnormalities on the CT images. The objective of the proposed work is to carry out the comparative study of the performance of orthogonal moments like Zernike, Racah and Legendre moments for the detection of abnormal tissue on CT liver images. The Region of Interest (ROI) based segmentation and watershed segmentation are applied to the input image and the features are extracted with the orthogonal moments and analyses are made with the combination of orthogonal moment with segmentation that provides better accuracy while detecting the tumor. This computational model is tested with many inputs and the performance of the orthogonal moments with segmentation for the texture analysis of CT scan images is computed and compared.
基金the National Natural Science Foundation of China(No.51677061,51507058).
文摘The feature extraction and pattern recognition techniques are of great importance to assess the insulation condition of gas-insulated switchgear.In this work,the ultra-high-frequency partial discharge(PD)signals generated from four types of typical insulation defects are analysed using S-transform,and the greyscale image in time-frequency representation is divided into five regions according to the cutoff frequencies of TEm1 modes.Then,the three low-order moments of every subregion are extracted and the feature selection is performed based on the J criterion.To confirm the effectiveness of selected moment features after considering the electromagnetic modes,the support vector machine,k-nearest neighbour and particle swarm-optimised extreme learning machine(ELM)are utilised to classify the type of PD,and they achieve the recognition accuracies of 92,88.5 and 95%,respectively.In addition,the results show that the ELM offers good generalisation performance at the fastest learning and testing speeds,thus more suitable for a real-time PD detection.