期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Engineering personalized neural tissue using functionalized transcription factors
1
作者 stephanie m.willerth 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1570-1571,共2页
Diseases and disorders of the central nervous system often require significant interventions to restore lost function due to their com- plexity. Examples of such disorders include Parkinson's disease, Alzheimer's di... Diseases and disorders of the central nervous system often require significant interventions to restore lost function due to their com- plexity. Examples of such disorders include Parkinson's disease, Alzheimer's disease, multiple sclerosis, traumatic brain injury, and spinal cord in)ury. These diseases and disorders result trom healthy cells being destroyed, which in turn causes dysfunction in the cen- tral nervous system, The death of these cells can trigger a cascade of events that affect the rest of the body, causing symptoms that become progressively worse over time. Developing strategies for repairing the damage to the central nervous system remains chal- lenging, in part due to its inability to regenerate. 展开更多
关键词 CELL engineering personalized neural tissue using functionalized transcription factors
下载PDF
Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C_(3)N_(4) nanosheets 被引量:3
2
作者 Jian Yang Liang Chu +5 位作者 Ruiyuan Hu Wei Liu Nanjing Liu Yuhui Ma Waqar Ahmad Xing’ao Li 《Nano Research》 SCIE EI CSCD 2021年第7期2139-2144,共6页
Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can r... Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can reduce both the loss of Voc and current hysteresis in PSCs.In this work,two-dimensional g-C_(3)N_(4) nanosheets were adopted to modify the compact TiO2 layers in planar PSCs,which can finely tune the work function(WF)and further improve the energy level alignment at the interface to enhance the Voc and diminish the hysteresis.Meanwhile,the quality of perovskite films and charge transfer of the devices were improved by g-C_(3)N_(4) nanosheets.Therefore,the PCE of the planar PSCs was champed to 19.55%without obvious hysteresis compared with the initial 15.81%,mainly owing to the remarkable improvement of VOC from 1.01 to 1.11 V.In addition,the stability of the devices was obviously improved.The results demonstrate an effective strategy of W_(F) engineering to enhance Voc and diminish hysteresis phenomenon for improving the performance of PSCs. 展开更多
关键词 perovskite solar cells power conversion efficiency open-circuit voltage g-C_(3)N_(4)nanosheets work function engineering
原文传递
Resolution and contrast enhancements of optical microscope based on point spread function engineering 被引量:1
3
作者 Yue FANG Cuifang KUANG Ye MA Yifan WANG Xu LIU 《Frontiers of Optoelectronics》 CSCD 2015年第2期152-162,共11页
Point spread function (PSF) engineering-based methods to enhance resolution and contrast of optical microscopes have experienced great achievements in the last decades. These techniques include: stimulated emis- si... Point spread function (PSF) engineering-based methods to enhance resolution and contrast of optical microscopes have experienced great achievements in the last decades. These techniques include: stimulated emis- sion depletion (STED), time-gated STED (g-STED), ground-state depletion microscopy (GSD), difference confocal microscopy, fluorescence emission difference microscopy (FED), switching laser mode (SLAM), virtual adaptable aperture system (VAAS), etc. Each affords unique strengths in resolution, contrast, speed and expenses. We explored how PSF engineering generally could be used to break the diffraction limitation, and concluded that the common target of PSF engineering- based methods is to get a sharper PSF. According to their common or distinctive principles to reshape the PSF, we divided all these methods into three categories, nonlinear PSF engineering, linear PSF engineering, and linear-based nonlinear PSF engineering and expounded these methods in classification. Nonlinear effect and linear subtraction is the core techniques described in this paper from the perspective of PSF reconstruction. By comparison, we emphasized each method's strengths, weaknesses and biologic applications. In the end, we promote an expecta- tion of prospective developing trend for PSF engineering. 展开更多
关键词 SUPER-RESOLUTION optical imaging pointspread function (PSF) engineering non-linear effects linearsubtraction
原文传递
Functional engineering strategies of 3D printed implants for hard tissue replacement
4
作者 Cen Chen Bo Huang +2 位作者 Yi Liu Fan Liu In-Seop Lee 《Regenerative Biomaterials》 SCIE EI 2023年第1期148-180,共33页
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues.In consideration of the disadvantages of bone sub... Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues.In consideration of the disadvantages of bone substitutes,including poor mechanical properties,lack of vascularization and insufficient osteointegration,functional modification strategies can provide multiple functions and desired characteristics of printing materials,enhance their physicochemical and biological properties in bone tissue engineering.Thus,this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement.It is structured as introducing 3D printing technologies,properties of printing materials(metals,ceramics and polymers)and typical functional engineering strategies utilized in the application of bone,cartilage and joint regeneration. 展开更多
关键词 hard tissue replacement bone regeneration 3D printing additive manufacturing functional engineering
原文传递
Dielectric metasurfaces for distance measurements and three-dimensional imaging 被引量:9
5
作者 Chunqi Jin Mina Afsharnia +6 位作者 RenéBerlich Stefan Fasold Chengjun Zou Dennis Arslan Isabelle Staude Thomas Pertsch Frank Setzpfandt 《Advanced Photonics》 EI CSCD 2019年第3期20-28,共9页
Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation.This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical pro... Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation.This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities.We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional(3-D)imaging based on a specifically engineered point-spread function(PSF).Using Huygens’metasurfaces with high transmission,we design and realize a phase mask that implements a rotating PSF for 3-D imaging.We experimentally characterize the properties of the realized double-helix PSF,finding that it can uniquely encode object distances within a wide range.Furthermore,we experimentally demonstrate wide-field depth retrieval within a 3-D scene,showing the suitability of metasurfaces to realize optics for 3-D imaging,using just a single camera and lens system. 展开更多
关键词 OPTICS NANOPHOTONICS metasurfaces Mie-resonances three-dimensional imaging point-spread function engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部