Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and productio...Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of V1V response and enhance our ability to predict fatigue damage. One ma- rine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers' fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.展开更多
On March 28, 2007, six people were buried by a cave-in at Suzhoujie Station on Line 10 of the Beijing Subway. The fatalities were caused when the unit in charge of construction foiled to implement a timely e-vacuation...On March 28, 2007, six people were buried by a cave-in at Suzhoujie Station on Line 10 of the Beijing Subway. The fatalities were caused when the unit in charge of construction foiled to implement a timely e-vacuation after a construction accident took place. (See Beijing Youth, April 1, 2007) .展开更多
Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital eng...Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the introduction of wireless sensor networks (WSNs). WSNs are already finding a variety of applications for both safety-critical and nonsafety critical distributed systems. Some of the many potential benefits of using WSN for aircraft systems include weight reduction, ease of maintenance and an increased monitoring capability. This paper discusses the application of WSN for several aircraft systems such as distributed aircraft engine control, aircraft flight control, aircraft engine and structural health monitoring systems. A brief description of each system is presented along with a discussion on the technological challenges. Future research directions for application of WSN in aircraft systems are also discussed.展开更多
基金supported in part by the National Science and Technology Major Project of China (2011ZX 05026-001-06)the National Natural Science Foundation of China (51249005 60972153)
文摘Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of V1V response and enhance our ability to predict fatigue damage. One ma- rine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers' fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.
文摘On March 28, 2007, six people were buried by a cave-in at Suzhoujie Station on Line 10 of the Beijing Subway. The fatalities were caused when the unit in charge of construction foiled to implement a timely e-vacuation after a construction accident took place. (See Beijing Youth, April 1, 2007) .
文摘Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the introduction of wireless sensor networks (WSNs). WSNs are already finding a variety of applications for both safety-critical and nonsafety critical distributed systems. Some of the many potential benefits of using WSN for aircraft systems include weight reduction, ease of maintenance and an increased monitoring capability. This paper discusses the application of WSN for several aircraft systems such as distributed aircraft engine control, aircraft flight control, aircraft engine and structural health monitoring systems. A brief description of each system is presented along with a discussion on the technological challenges. Future research directions for application of WSN in aircraft systems are also discussed.