期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence studyof flow separation on the nozzle vibration response 被引量:1
1
作者 Geng Li Qin Liu +1 位作者 Xuequn Han Yunqiang Guo 《Propulsion and Power Research》 SCIE 2016年第2期108-117,共10页
In the present paper,the vibration response difference of the upper stage nozzlewith higher expansion ratio between ground and altitude simulation hot-firing test is analyzed.lt indicates that the acceleration respons... In the present paper,the vibration response difference of the upper stage nozzlewith higher expansion ratio between ground and altitude simulation hot-firing test is analyzed.lt indicates that the acceleration response of the nozzle under ground hot-firing test is muchhigher than that of the altitude condition.In order to find the essential reason,the experimentaland numerical simulation studies of the flow separation are developed by using the test enginenozzle.The experimental data show that the nozzle intemal flow occurred flow separation andthe divergence cone intemal wall pressure pulsation increased significantly downstream fromthe separation location.The numerical simulation and experimental results indicate that theincrease of internal wall pressure and turbulence pulsating pressure are the substantial reason ofvibration response increasing aggravatingly during the ground firing test. 展开更多
关键词 Solid rocket motor Flow separation Oscillation response Spectrum analysis Test engine nozzle
原文传递
Thermal-structural response and low-cycle fatigue damage of channel wall nozzle 被引量:3
2
作者 Cheng Cheng Wang Yibai +2 位作者 Liu Yu Liu Dawei Lu Xingyu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1449-1458,共10页
To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis tec... To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis technique are applied.In combination with the material lowcycle fatigue behavior,the modifed continuous damage model on the basics of local strain approach is adopted to analyze the fatigue damage distribution and accumulation with increasing nozzle work cycles.Simulation results have shown that the variation of the non-uniform temperature distribution of channel wall nozzle during cyclic work plays a signifcant role in the thermal-structural response by altering the material properties;the thermal-mechanical loads interaction results in serious deformation mainly in the front region of slotted liner.In particular,the maximal cyclic strains appear in the intersecting regions of liner gas side wall and symmetric planes of channel and rib,where the fatigue failure takes place initially;with the increase in nozzle work cycles,the residual plastic strain accumulates linearly,and the strain amplitude and increment in each work cycle are separately equal,but the fatigue damage grows up nonlinearly.As a result,a simplifed nonlinear damage accumulation approach has been suggested to estimate the fatigue service life of channel wall nozzle.The predicted node life is obviously conservative to the Miner's life.In addition,several workable methods have also been proposed to improve the channel wall nozzle durability. 展开更多
关键词 Channel wall nozzle Damage Life Low-cycle fatigue Reusable engine Thermal-structural response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部