期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multiclassification algorithm and its realization based on least square support vector machine algorithm
1
作者 Fan Youping Chen Yunping +1 位作者 Sun Wansheng Li Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期901-907,共7页
As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear... As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear optimal classifter. However, realizing SVM requires resolving quadratic programming under constraints of inequality, which results in calculation difficulty while learning samples gets larger. Besides, standard SVM is incapable of tackling multi-classification. To overcome the bottleneck of populating SVM, with training algorithm presented, the problem of quadratic programming is converted into that of resolving a linear system of equations composed of a group of equation constraints by adopting the least square SVM(LS-SVM) and introducing a modifying variable which can change inequality constraints into equation constraints, which simplifies the calculation. With regard to multi-classification, an LS-SVM applicable in multi-dassiftcation is deduced. Finally, efficiency of the algorithm is checked by using universal Circle in square and twospirals to measure the performance of the classifier. 展开更多
关键词 control theory control engineering artificial intelligence machine learning support vector machine.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部