期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Trace Cobalt Doping and Defect Engineering of High Surface Area α-Ni(OH)_(2) for Electrocatalytic Urea Oxidation 被引量:1
1
作者 Yi Liu Zhihui Yang +2 位作者 Yuqin Zou Shuangyin Wang Junying He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期111-118,共8页
Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by ... Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy. 展开更多
关键词 defect engineering ELECTROCATALYSIS small molecule oxidation
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting
2
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Intrinsic pentagon defect engineering in multiple spatial-scale carbon frameworks for efficient triiodide reduction
3
作者 Siyi Hou Xuedan Song +6 位作者 Chang Yu Jiangwei Chang Yiwang Ding Yingbin Liu Xiubo Zhang Weizhe Liu Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期20-28,I0002,共10页
Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topologi... Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topological defects in carbon frameworks to reveal the relationship between reactivity and defect structure remains a challenging task.Herein,the intrinsic pentagon carbon sites that can favor electron overflow and enhance their binding affinity towards the intermediates of catalytic reaction are firstly presented by the work function and the p-band center calculations.To experimentally verify this,the cage-opening reaction of fullerene is proposed and utilized for synthesizing carbon quantum dots with specific pentagon configuration(CQDs-P),subsequently utilizing CQDs-P to modulate the micro-scale defect density of three-dimensional reduced graphene oxide(rGO)viaπ-πinteractions.The multiple spatial-scale rGO-conjugated CQDs-P structure simultaneously possesses abundant pentagon and edge defects as catalytic active sites and long-range-orderedπelectron delocalization system as conductive network.The defects-rich CQDs-P/rGO-4 all-carbon-based catalyst exhibits superb catalytic activity for triiodide reduction reaction with a high photoelectric conversion efficiency of 8.40%,superior to the Pt reference(7.97%).Theoretical calculations suggest that pentagon defects in the carbon frameworks can promote charge transfer and modulate the adsorption/dissociation behavior of the reaction intermediates,thus enhancing the electrocatalytic activity of the catalyst.This work confirms the role of intrinsic pentagon defects in catalytic reactions and provides a new insight into the synthesis of defects-rich carbon catalysts. 展开更多
关键词 defect engineering Pentagon carbon Carbon quantum dots Electrocatalytic activity Triiodide reduction
下载PDF
Defect engineering and Ni promoter synergistically accelerating electron transfer to Ru^(0) sites in UiO-66(Ce) for dicyclopentadiene hydrogenation under mild condition
4
作者 Rushuo Li Tao Ban +6 位作者 Danfeng Zhao Jing Lin Zhiyuan Liu Linmeng Wang Xiubing Huang Zhiping Tao Ge Wang 《Nano Research》 SCIE EI CSCD 2024年第11期9550-9563,共14页
Olefin hydrogenation under mild condition is crucial and challenging for industrial applications. Herein, defective UiO-66(Ce) was constructed by using cyanuric acid as the molecular etching “scissors” and further t... Olefin hydrogenation under mild condition is crucial and challenging for industrial applications. Herein, defective UiO-66(Ce) was constructed by using cyanuric acid as the molecular etching “scissors” and further to synthesize heterogeneous catalyst with highly dispersed RuNi nanoparticles (Ru1Ni1.5@UiO-66(Ce)-12 h). The construction of Ce-O-Ru/Ni heterogeneous interfaces and Ni–Ru bonds provide electron transfer channels from Ce-oxo clusters and Ni species to Ru species. Furthermore, the microenvironment and electronic structure of Ru0 active sites were synergistically regulated by adjusting the content of metal-organic frameworks (MOFs) defects and Ni promoter, thereby enhancing the adsorption and activation ability of H–H and C=C bonds. Therefore, Ru1Ni1.5@UiO-66(Ce)-12 h achieved dicyclopentadiene saturated hydrogenation (100% conversion) to tetrahydrodicyclopentadiene (∼ 100% selectivity) under mild condition (35℃, 1 MPa) with only 25 min. Meanwhile, the sample exhibited excellent structural stability after 6 cycles test. This study provides a promising strategy for the rational design of remarkable noble metal-based catalysts for practical applications. 展开更多
关键词 metal-organic frameworks defect engineering Ni promoter electron-rich Ru^(0)active sites dicyclopentadiene hydrogenation
原文传递
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
5
作者 陈思汗 黎俊 +5 位作者 刘可可 孙笑晨 万京伟 翟慧宇 唐新峰 谭刚健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期560-567,共8页
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit... Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs. 展开更多
关键词 Ga-doped Li_7La_3Zr_2O_(12)(Ga-LLZO) defect chemistry engineering high room temperature ionic conductivity electrochemical stability
下载PDF
Defect Engineering of Carbons for Energy Conversion and Storage Applications 被引量:5
6
作者 Xianyou Luo Heng Zheng +4 位作者 Wende Lai Ping Yuan Shengwei Li De Li Yong Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期264-285,共22页
Sustainable energy conversion and storage technologies are a vital prerequisite for neutral future carbon.To this end,carbon materials with attractive features,such as tunable pore architecture,good electrical conduct... Sustainable energy conversion and storage technologies are a vital prerequisite for neutral future carbon.To this end,carbon materials with attractive features,such as tunable pore architecture,good electrical conductivity,outstanding physicochemical stability,abundant resource,and low cost,have used as promising electrode materials for energy conversion and storage.Defect engineering could modulate the structures of carbon materials,thereby affecting their electronic properties.The presence of defects on carbons may lead to asymmetric charge distribution,change in geometrical configuration,and distortion of the electronic structure that may result in unexpected electrochemical performances.In this review,recent advances in defects of carbons used for energy conversion and storage were examined in terms of types,regulation strategies,and fine characterization means of defects.The applications of such carbons in supercapacitors,rechargeable batteries,and electrocatalysis were also discussed.The perspectives toward the development of defect engineering carbons were proposed.In all,novel insights related to improvement in high-performance carbon materials for future energy conversion and storage applications were provided. 展开更多
关键词 carbon materials defect engineering ELECTROCATALYSIS rechargeable batteries SUPERCAPACITORS
下载PDF
Defect engineering of ternary Cu-In-Se quantum dots for boosting photoelectrochemical hydrogen generation 被引量:2
7
作者 Shi Li Sung-Mok Jung +10 位作者 Wookjin Chung Joo-Won Seo Hwapyong Kim Soo Ik Park Hyo Cheol Lee Ji Su Han Seung Beom Ha In Young Kim Su-Il In Jae-Yup Kim Jiwoong Yang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期215-228,共14页
Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly aff... Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation. 展开更多
关键词 copper-indium-selenide defect engineering photoelectrochemical hydrogen generation quantum dots solar hydrogen
下载PDF
Anion Defects Engineering of Ternary Nb-Based Chalcogenide Anodes Toward High-Performance Sodium-Based Dual-Ion Batteries 被引量:1
8
作者 Yangjie Liu Min Qiu +7 位作者 Xiang Hu Jun Yuan Weilu Liao Liangmei Sheng Yuhua Chen Yongmin Wu Hongbing Zhan Zhenhai Wen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期218-232,共15页
Sodium-based dual-ion batteries(SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIB... Sodium-based dual-ion batteries(SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIBs featuring with high kinetics and long durability. Herein, we report the design and fabrication of N-doped carbon film-modified niobium sulfur–selenium(NbSSe/NC) nanosheets architecture, which holds favorable merits for Na^(+) storage of enlarged interlayer space, improved electrical conductivity, as well as enhanced reaction reversibility, endowing it with high capacity, high-rate capability and high cycling stability. The combined electrochemical studies with density functional theory calculation reveal that the enriched defects in such nanosheets architecture can benefit for facilitating charge transfer and Na+ adsorption to speed the electrochemical kinetics. The NbSSe/NC composites are studied as the anode of a full SDIBs by pairing the expanded graphite as cathode, which shows an impressively cyclic durability with negligible capacity attenuation over 1000 cycles at 0.5 A g^(-1), as well as an outstanding energy density of 230.6 Wh kg^(-1) based on the total mass of anode and cathode. 展开更多
关键词 NbSSe Sodium-based dual-ion battery Anode Nanosheets architecture Anion defects engineering
下载PDF
Synergy mechanism of defect engineering in MoS_(2)/FeS_(2)/C heterostructure for high-performance sodium-ion battery 被引量:1
9
作者 Linlin Ma Xiaomei Zhou +9 位作者 Jun Sun Pan Zhang Baoxiu Hou Shuaihua Zhang Ningzhao Shang Jianjun Song Hongjun Ye Hui Shao Yongfu Tang Xiaoxian Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期268-276,I0006,共10页
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here... MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability. 展开更多
关键词 defect engineering HETEROSTRUCTURE Hollow structure Sodium-ion battery MoS_(2)/FeS_(2)
下载PDF
Decade Milestone Advancement of Defect-Engineered g-C_(3)N_(4) for Solar Catalytic Applications 被引量:3
10
作者 Shaoqi Hou Xiaochun Gao +8 位作者 Xingyue Lv Yilin Zhao Xitao Yin Ying Liu Juan Fang Xingxing Yu Xiaoguang Ma Tianyi Ma Dawei Su 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期153-218,共66页
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil... Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis. 展开更多
关键词 defect engineering g-C_(3)N_(4) Electronic band structures Photocarrier transfer kinetics defect states
下载PDF
Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO_(3)Nanocomposite Towards Electromagnetic Wave Absorption
11
作者 Ting Wang Wenxin Zhao +8 位作者 Yukun Miao Anguo Cui Chuanhui Gao Chang Wang Liying Yuan Zhongning Tian Alan Meng Zhenjiang Li Meng Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期406-426,共21页
Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic stru... Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering. 展开更多
关键词 defect engineering Oxygen vacancies SiC@MoO_(3)nanocomposite Electromagnetic wave absorption Induced dipole polarization
下载PDF
Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions 被引量:5
12
作者 Dongxue Guo Shuo Wang +2 位作者 Jun Xu Wenjun Zheng Danhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期448-468,共21页
Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3... Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability. 展开更多
关键词 Nitrogen reduction ELECTROCATALYSIS defect engineering Interface engineering Ambient conditions
下载PDF
Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering 被引量:2
13
作者 XU Jian ZHANG Yi-qiong +8 位作者 ZHU Xiao-bo LONG Ting XU He LOU Xue-chun XU Zhi-zhao FU Hu XIANG Wei-zhe XIE Ming-ming JIA Chuan-kun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2956-2967,共12页
Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the ... Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the low electrochemical performance of the available carbon-based electrodes.Defect engineering is a powerful strategy to enhance the redox catalytic activity of carbon-based electrodes for VRFBs.In this paper,uniform carbon defects are introduced on the surfaces of carbon felt(CF)electrode by Ar plasma etching.Together with a higher specific surface area,the Ar plasma treated CF offers additional catalytic sites,allowing faster and more reversible oxidation/reduction reactions of vanadium ions.As a result,the VRFB using plasma treated electrode shows a power density of 1018.3 mW/cm^(2),an energy efficiency(EE)of 84.5%,and the EE remains stable over 1000 cycles. 展开更多
关键词 vanadium redox flow batteries carbon felt defect engineering plasma treatment
下载PDF
Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction 被引量:5
14
作者 Hang Su Xiaodong Pan +2 位作者 Suqin Li Hao Zhang Ruqiang Zou 《Carbon Energy》 SCIE CSCD 2023年第6期21-44,共24页
Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engin... Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts. 展开更多
关键词 defect engineering ELECTROCATALYSTS hydrogen evolution reaction(HER) transition metal dichalcogenides
下载PDF
Modulating of MoSe_(2)functional plane via doping-defect engineering strategy for the development of conductive and electrocatalytic mediators in Li-S batteries
15
作者 Mohammed A.Al-Tahan Yutao Dong +6 位作者 Aml E.Shrshr Xiyang Kang Hui Guan Yumiao Han Zihao Cheng Weihua Chen Jianmin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期512-523,I0013,共13页
The lithium polysulfide shuttle and sluggish sulfur reaction kinetics still pose significant challenges to lithium-sulfur(Li-S)batteries.The functional plane of Fe-MoSe_(2)@r GO nanohybrid with abundant defects has be... The lithium polysulfide shuttle and sluggish sulfur reaction kinetics still pose significant challenges to lithium-sulfur(Li-S)batteries.The functional plane of Fe-MoSe_(2)@r GO nanohybrid with abundant defects has been designed and applied in Li-S batteries to develop the functional separator and multi-layer sulfur cathode.The cell with a functional separator exhibits a retention capacity of 462 m Ah g^(-1)after the 1000th at 0.5 C and 516 m Ah g^(-1)after the 600th at 0.3 C.Even at low electrolyte conditions(7.0μL_(mgsulfur)^(-1)and 15μL_(mgsulfur)^(-1))under high sulfur loadings(3.46 mg cm^(-2)and 3.73 mg cm^(-2)),the cell still presents high reversible discharge capacities 679 and 762 m Ah g^(-1)after 70 cycles,respectively.Further,at sulfur loadings up to 8.26 and 5.2 mg cm^(-2),the cells assembled with the bi-layers sulfur cathode and the tri-layers sulfur cathode give reversible capacities of 3.3 m Ah cm^(-2)after the 100th cycle and 3.0 m Ah cm^(-2)after the 120th cycle,respectively.This research not only demonstrates that the FeMoSe_(2)@r GO functional plane is successfully designed and applied in Li-S batteries with superior electrochemical performances but also paves the novel way for developing a unique multi-layer cathode technique to enhance and advance the electrochemical behavior of Li-S cells at a high-sulfur-loading cathode under lean electrolyte/sulfur(E/S)ratio. 展开更多
关键词 Lithium-sulfur batteries Modified separator Fe-MoSe_(2)@rGO Multi-layers cathode defect engineering
下载PDF
Abnormal enhancement to the quality factors of carbon nanotube via defects engineering
16
作者 Ke Duan Li Li +2 位作者 Sihan Liu Yujin Hu Xuelin Wang 《Nano Materials Science》 EI CAS CSCD 2022年第3期259-265,共7页
Low quality(Q) factor is often the limiting factor for high performance carbon nanotube(CNT) resonators. The most commonly used approach to enhance the Q factor of CNTs is to reduce/eliminate the intrinsic defects.Her... Low quality(Q) factor is often the limiting factor for high performance carbon nanotube(CNT) resonators. The most commonly used approach to enhance the Q factor of CNTs is to reduce/eliminate the intrinsic defects.Herein, we show surprisingly that hole defects of suitable size and position are able to enhance the Q factor of CNT, which strongly contradicts to the common notion that the presence of defects promote intrinsic dissipation via defects dissipation. By analyzing the strain distribution, we find that such abnormal enhancement in Q factor of defected CNT originates from a coupling competition mechanism between the atomic mismatch around defected atoms and the thermoelastic damping. Although the presence of holes will introduce an additional defect dissipation source, suitable holes are capable of reducing the energy dissipation arisen from the thermoelastic damping, through changing the spatial strain field of defected CNT. This coupling competition mechanism provides a new route for designing high performance CNT resonators via defects engineering. 展开更多
关键词 defects engineering CNT resonator Q factor
下载PDF
Treatment of Chronic Periodontal Defects with Tissue Engineering: A Pilot Study in Dogs
17
作者 Min-Kui LIN Fu-Hua YAN~Δ Xin ZHAO Kai LUO(Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou 350002, China) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期67-68,共2页
关键词 Treatment of Chronic Periodontal defects with Tissue engineering A Pilot Study in Dogs
下载PDF
Defect engineering in N-doped OMC for lightweight and high-efficiency electromagnetic wave absorption 被引量:1
18
作者 Panpan Zhou Jing Zhang +4 位作者 Zhi Song Yawei Kuang Yushen Liu Lixi Wang Qitu Zhang 《Journal of Materiomics》 SCIE CSCD 2024年第1期190-199,共10页
Developing low density and efficient dielectric loss materials has become a research hotspot,which can greatly meet the demands of modern radars and settle the problem of electromagnetic wave pollution.Herein,a series... Developing low density and efficient dielectric loss materials has become a research hotspot,which can greatly meet the demands of modern radars and settle the problem of electromagnetic wave pollution.Herein,a series of N-doped ordered mesoporous carbon(OMC)materials with different nitrogen content were prepared via a modified self-assembly method and defect engineering in subsequent calcination treatment.It was discovered that the content and type of nitrogen doping can be effectively modulated by the amount of precursor dicyandiamide,resulting in the changes in porous structure,carbon defects,electromagnetic properties,microwave absorption(MA)performance and radar cross section(RCS)reduction values.Remarkably,as-fabricated OMC/N2.5 displays ideal MA performance,whose minimum reflection loss(RL(min))value reaches−35.3 dB at 7.76 GHz(3.0 mm)and its effective absorption bandwidth reaches 3.52 GHz(10.64-14.16 GHz,2.0 mm).Furthermore,the optimal RCS reduction values can be obtained as 12.01 dB·m^(2) when the detection theta is 30°,which validly reduces the chances of being detected by radar.Thus,this work opens up a novel way for the development of lightweight and high-efficiency MA materials. 展开更多
关键词 OMC N-DOPED defect engineering RCS simulation Microwave absorption
原文传递
Defect engineering on constructing surface active sites in catalysts for environment and energy applications
19
作者 Yawen Cai Baowei Hu Xiangke Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第7期11-32,共22页
The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts.Defect engineering is the most feasible option to modulate the surface a... The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts.Defect engineering is the most feasible option to modulate the surface active sites of catalysts.Creating specific active sites on the catalyst allows precise modulation of its electronic structure and physicochemical characteristics.Here,we outlined the engineering of several types of defects,including vacancy defects,void defects,dopant-related defects,and defect-based single atomic sites.An overview of progress in fabricating structural defects on catalysts via de novo synthesis or post-synthetic modification was provided.Then,the applications of the well-designed defective catalysts in energy conversion and environmental remediation were carefully elucidated.Finally,current challenges in the precise construction of active defect sites on the catalyst and future perspectives for the development directions of precisely controlled synthesis of defective catalysts were also proposed. 展开更多
关键词 defect engineering VACANCY void defects DOPING single atomic sites
原文传递
Defect engineering of W^(6+)-doped NiO for high-performance black smart windows
20
作者 Yingjun Xiao Xiang Zhang +6 位作者 Dukang Yan Jianbo Deng Mingjun Chen Hulin Zhang Wenhai Sun Jiupeng Zhao Yao Li 《Nano Research》 SCIE EI CSCD 2024年第4期3043-3052,共10页
In this report,W^(6+)doping as a defect engineering strategy has been proposed to improve the electrochromic properties of NiO film.Further research was conducted to explore the electrochromic properties and the modif... In this report,W^(6+)doping as a defect engineering strategy has been proposed to improve the electrochromic properties of NiO film.Further research was conducted to explore the electrochromic properties and the modified mechanism of W-doped NiO film.Compared to the pure NiO,W-doped NiO film exhibits improved electrochromic properties with significant optical modulation(61.56%at 550 nm),fast switching speed(4.42 s/1.40 s for coloring/bleaching),high coloration efficiency(45.41 cm^(2)·C-1)and outstanding cycling stability(no significant attenuation after 2000 cycles)in Li-based electrolytes.Density functional theory(DFT)calculations combined with the experimental results indicate that the improved electrochromic properties were due to enhanced the electronic conductivity and ion conductivity after the introduction of W^(6+).The charge capacity of W-doped NiO has also been improved,and it can function with WO_(3) to achieve a high performance black electrochromic smart window(ECSW)by balancing charge.This work could advance the fundamental understanding of defect engineering as an effective strategy to boost the electrochromic properties of NiO anodic material,manifesting a significant development as a candidate counter electrode in high-performance black smart windows. 展开更多
关键词 NIO defect engineering charge balance black electrochromic windows
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部