Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine...Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.展开更多
Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is intr...Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is introduced into aircraft engine gas path fault diagnosis.The generalization capacity of Gauss kernel function usually used in TWSVM is relatively weak.So a mixed kernel function is used to improve performance to ensure that the TWSVM algorithm can better balance a strong generalization ability and a good learning ability.Experimental results prove that the cross validation training accuracy of TWSVM using the mixed kernel function averagely increases 2%.Grid search is usually applied in parameter optimization of TWSVM,but it heavily depends on experience.Therefore,the hybrid particle swarm algorithm is introduced.It can intelligently and rapidly find the global optimum.Experiments prove that its training accuracy is better than that of the classical particle swarm algorithm by 5%.展开更多
Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to compon...Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines.展开更多
The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of mach...The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency.展开更多
Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme le...Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme learning machine(ELM)is proposed.Firstly,the original signal is decomposed by wavelet packet,and correlation coefficients between the reconstructed signal of each sub-band and the original signal as well as the energy entropy of each sample are obtained.Then,the eigenvectors established by the correlation coefficients method and the energy entropy method fused with kurtosis are inputted to the four kinds of classifiers including BP neural network,KNN classifier,support vector machine and ELM respectively for training and testing.Experimental results show that the method proposed in this paper can effectively reflect the differences that the fault produces and identify the single-cylinder misfire accurately,which has the advantages of higher accuracy and shorter training time.展开更多
A new fast learning algorithm was presented to solve the large-scale support vector machine ( SVM ) training problem of aero-engine fault diagnosis.The relative boundary vectors ( RBVs ) instead of all the original tr...A new fast learning algorithm was presented to solve the large-scale support vector machine ( SVM ) training problem of aero-engine fault diagnosis.The relative boundary vectors ( RBVs ) instead of all the original training samples were used for the training of the binary SVM fault classifiers.This pruning strategy decreased the number of final training sample significantly and can keep classification accuracy almost invariable.Accordingly , the training time was shortened to 1 / 20compared with basic SVM classifier.Meanwhile , owing to the reduction of support vector number , the classification time was also reduced.When sample aliasing existed , the aliasing sample points which were not of the same class were eliminated before the relative boundary vectors were computed.Besides , the samples near the relative boundary vectors were selected for SVM training in order to prevent the loss of some key sample points resulted from aliasing.This can improve classification accuracy effectively.A simulation example to classify 5classes of combination fault of aero-engine gas path components was finished and the total fault classification accuracy reached 96.1%.Simulation results show that this fast learning algorithm is effective , reliable and easy to be implemented for engineering application.展开更多
The fault detection and diagnosis of diesel engine valve clearance can effectively improve the availability and safety of diesel engine and have extremely important value and significance.Diesel engines generally oper...The fault detection and diagnosis of diesel engine valve clearance can effectively improve the availability and safety of diesel engine and have extremely important value and significance.Diesel engines generally operate in various stable operating conditions,which have important influence on the fault diagnosis.However,many fault diagnosis methods have been put forward under specific stable operating condition based on vibration signal.As the result of great impact caused by operating conditions,corresponding diagnosis models cannot deal with the fault diagnosis under different operating conditions with required accuracy.In this paper,a fault diagnosis of diesel engine valve clearance under variable operating condition based on soft interval support vector machine(SVM)is proposed.Firstly,the fault features with weak condition sensitivity have been extracted according to the influence analysis of fault on vibration signal.Moreover,soft interval constraint has been applied to SVM algorithm to reduce the random influence of vibration signal on fault features.In addition,different machine learning algorithms based on different feature sets are adopted to conduct the fault diagnosis under different operating conditions for comparison.Experimental results show that the proposed method is applicable for fault diagnosis under variable operating condition with good accuracy.展开更多
Software testing is an integral part of software development. Not only that testing exists in each software iteration cycle, but it also consumes a considerable amount of resources. While resources such as machinery a...Software testing is an integral part of software development. Not only that testing exists in each software iteration cycle, but it also consumes a considerable amount of resources. While resources such as machinery and manpower are often restricted, it is crucial to decide where and how much effort to put into testing. One way to address this problem is to identify which components of the subject under the test are more error-prone and thus demand more testing efforts. Recent development in machine learning techniques shows promising potential to predict faults in different components of a software system. This work conducts an empirical study to explore the feasibility of using static software metrics to predict software faults. We apply four machine learning techniques to construct fault prediction models from the PROMISE data set and evaluate the effectiveness of using static software metrics to build fault prediction models in four continuous versions of Apache Ant. The empirical results show that the combined software metrics generate the least misclassification errors. The fault prediction results vary significantly among different machine learning techniques and data set. Overall, fault prediction models built with the support vector machine (SVM) have the lowest misclassification errors.展开更多
文摘Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.
基金supported by the Fundamental Research Funds for the Central Universities(No.NS2016027)
文摘Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is introduced into aircraft engine gas path fault diagnosis.The generalization capacity of Gauss kernel function usually used in TWSVM is relatively weak.So a mixed kernel function is used to improve performance to ensure that the TWSVM algorithm can better balance a strong generalization ability and a good learning ability.Experimental results prove that the cross validation training accuracy of TWSVM using the mixed kernel function averagely increases 2%.Grid search is usually applied in parameter optimization of TWSVM,but it heavily depends on experience.Therefore,the hybrid particle swarm algorithm is introduced.It can intelligently and rapidly find the global optimum.Experiments prove that its training accuracy is better than that of the classical particle swarm algorithm by 5%.
基金The Natural Sciences and Engineering Research Council of Canada(NSERC)the Department of National Defence(DND)under the Discovery Grant and DND Supplemental Programs。
文摘Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines.
文摘The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency.
基金Tianjin Regional Demonstration Project of Marine Economy Innovation and Development(No.2015120024000473)
文摘Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme learning machine(ELM)is proposed.Firstly,the original signal is decomposed by wavelet packet,and correlation coefficients between the reconstructed signal of each sub-band and the original signal as well as the energy entropy of each sample are obtained.Then,the eigenvectors established by the correlation coefficients method and the energy entropy method fused with kurtosis are inputted to the four kinds of classifiers including BP neural network,KNN classifier,support vector machine and ELM respectively for training and testing.Experimental results show that the method proposed in this paper can effectively reflect the differences that the fault produces and identify the single-cylinder misfire accurately,which has the advantages of higher accuracy and shorter training time.
基金"Six professional talent summit projects"of Jiangsu Province(07-E-029)Natural Science Foundation of Colleges and Universities in Jiangsu Province(JHZD08-40)"Qing-Lan Project"Foundation of Jiangsu Province(2007)
文摘A new fast learning algorithm was presented to solve the large-scale support vector machine ( SVM ) training problem of aero-engine fault diagnosis.The relative boundary vectors ( RBVs ) instead of all the original training samples were used for the training of the binary SVM fault classifiers.This pruning strategy decreased the number of final training sample significantly and can keep classification accuracy almost invariable.Accordingly , the training time was shortened to 1 / 20compared with basic SVM classifier.Meanwhile , owing to the reduction of support vector number , the classification time was also reduced.When sample aliasing existed , the aliasing sample points which were not of the same class were eliminated before the relative boundary vectors were computed.Besides , the samples near the relative boundary vectors were selected for SVM training in order to prevent the loss of some key sample points resulted from aliasing.This can improve classification accuracy effectively.A simulation example to classify 5classes of combination fault of aero-engine gas path components was finished and the total fault classification accuracy reached 96.1%.Simulation results show that this fast learning algorithm is effective , reliable and easy to be implemented for engineering application.
基金Supported by the National Key Research and Development Plan(No.2016YFF0203305)the Fundamental Research Funds for the Central Universities(No.JD1912,ZY1940)Double First-rate Construction Special Funds(No.ZD1601).
文摘The fault detection and diagnosis of diesel engine valve clearance can effectively improve the availability and safety of diesel engine and have extremely important value and significance.Diesel engines generally operate in various stable operating conditions,which have important influence on the fault diagnosis.However,many fault diagnosis methods have been put forward under specific stable operating condition based on vibration signal.As the result of great impact caused by operating conditions,corresponding diagnosis models cannot deal with the fault diagnosis under different operating conditions with required accuracy.In this paper,a fault diagnosis of diesel engine valve clearance under variable operating condition based on soft interval support vector machine(SVM)is proposed.Firstly,the fault features with weak condition sensitivity have been extracted according to the influence analysis of fault on vibration signal.Moreover,soft interval constraint has been applied to SVM algorithm to reduce the random influence of vibration signal on fault features.In addition,different machine learning algorithms based on different feature sets are adopted to conduct the fault diagnosis under different operating conditions for comparison.Experimental results show that the proposed method is applicable for fault diagnosis under variable operating condition with good accuracy.
文摘Software testing is an integral part of software development. Not only that testing exists in each software iteration cycle, but it also consumes a considerable amount of resources. While resources such as machinery and manpower are often restricted, it is crucial to decide where and how much effort to put into testing. One way to address this problem is to identify which components of the subject under the test are more error-prone and thus demand more testing efforts. Recent development in machine learning techniques shows promising potential to predict faults in different components of a software system. This work conducts an empirical study to explore the feasibility of using static software metrics to predict software faults. We apply four machine learning techniques to construct fault prediction models from the PROMISE data set and evaluate the effectiveness of using static software metrics to build fault prediction models in four continuous versions of Apache Ant. The empirical results show that the combined software metrics generate the least misclassification errors. The fault prediction results vary significantly among different machine learning techniques and data set. Overall, fault prediction models built with the support vector machine (SVM) have the lowest misclassification errors.