This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain...This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.展开更多
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif...The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.展开更多
The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the plannin...The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the planning and construction of major projects.For the long-term prevention and early control of regional seismic landslides,based on analyzing seismic landslide characteristics,the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%.The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons,and are significantly affected by the active tectonics.The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins,broad river valleys,and plateau planation planes.The major east-west linear projects mainly pass through five areas with high seismic landslide hazard:Luding-Kangding section,Yajiang-Xinlong(Yalong river)section,Batang-Baiyu(Jinsha river)section,Basu(Nujiang river)section,and Bomi-Linzhi(eastern Himalaya syntaxis)section.The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows.The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.展开更多
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 ea...At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.展开更多
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ...The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use.展开更多
Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional metho...Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.展开更多
Knowledge graph technology play a more and more important role in various fields of industry and academia.This paper firstly introduces the general framework of the knowledge graph construction,which includes three st...Knowledge graph technology play a more and more important role in various fields of industry and academia.This paper firstly introduces the general framework of the knowledge graph construction,which includes three stages:information extraction,knowledge fusion and knowledge processing.In order to improve the efficiency of quality and safety supervision of transportation engineering construction,this paper constructs a knowledge graph by acquiring multi-sources heterogeneous data from supervision of transportation engineering quality and safety.It employs a bottom-up construction strategy and some natural language processing methods to solve the problems of the knowledge extraction for transportation engineering construction.We use the entity relation extraction method to extract the entity triples from the multi-sources heterogeneous data,and then employ knowledge inference to complete the edges in the constructed knowledge graph,finally perform quality evaluation to add the valid triples to the knowledge graph for updating.Subgraph matching technology is also exploited to retrieve the constructed knowledge graph for efficiently acquiring the useful knowledge about the quality and safety of transportation engineering projects.The results show that the constructed knowledge graph provides a practical and valuable tool for the quality and safety supervision of transportation engineering construction.展开更多
Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalitie...Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.展开更多
The influence of modern electronic technology on communication engineering is explained in this paper.Based on the development status of communication engineering,the characteristics and application strategies of mode...The influence of modern electronic technology on communication engineering is explained in this paper.Based on the development status of communication engineering,the characteristics and application strategies of modern electronic technology in communication engineering are discussed,including the optimization and improvement of wireless communication system.展开更多
Visible Light Communication(VLC)technology is aggressive research for the next generation of communication.Currently,Radio Frequency(RF)communication has crowed spectrum.An Intelligent Transportation System(ITS)has be...Visible Light Communication(VLC)technology is aggressive research for the next generation of communication.Currently,Radio Frequency(RF)communication has crowed spectrum.An Intelligent Transportation System(ITS)has been improved in the communication network for Vehicle-to-Vehicle(V2 V),Vehicle-to-Infrastructure(V2I),and Infrastructure-to-Vehicle(I2V)by using the visible light spectrum instead of the RF spectrum.This article studies the characterization of Line-of-Sight(LOS)optical performance in an Outdoor Wireless Visible Light Communication(OWVLC)system employing a Multiple-Input Multiple-Output(MIMO)technique for I2V communications in ITS regulations.We design the new configuration of the OWVLC-I2V system,which is an alternative approach to communication for I2V system at nighttime.The results show the Channel Impulse Response(CIR)of the LOS links in visible light communication for I2V system in ITS by investigating the receiver on the vehicle moving along the coverage communication area.Furthermore,the OWVLC-I2V system using the MIMO technique depicts the performance of throughput and Bit Error Rate(BER)vs.vehicle speed while the vehicle passes a street light.展开更多
By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Th...By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Then a mathematical model is used to reveal the influence mechanism on hydrodynamic characteristics and sediment transport of the wading engineering groups such as a tide gate, a breakwater, reservoirs, bridges and wharves, which were built in different periods. The results showed the hydrodynamic characteristics and sediment transport of the Yong River changed obviously due to the wading engineering groups. The tide gate induced deformation of the tidal wave, obvious reduction of the tidal influx and weakness of the tidal dynamic, decrease of the sediment yield of flood and ebb tide and channel deposition. The breakwater blocked estuarine entrances, resulting in the change of the tidal current and the reduction of the tidal influx in the estuarine area. The large-scale reservoirs gradually made the decrease of the Yong River runoff. The bridge and wharf groups took up cross-section areas, the cumulative affection of which caused the increase of tidal level in the tidal river.展开更多
Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the...Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination.展开更多
China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the saf...China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.展开更多
With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries...With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries to participate in infrastructure construction,employing a win-win strategy in favor of the people and governments of both countries.Among the cooperation domains,our country’s electrical companies have achieved a series of remarkable results in the international Engineering,Procurement,and Construction(EPC)project market with their outstanding business capabilities and technical advantages.Nevertheless,some shortcomings cannot be overlooked,the most notable of which appears to be the impediment associated with engineering translation,which has always been an obsession among translators of Chinese companies.Taking the transmission line project in the Republic of Madagascar as an example,an analysis of French-Chinese translation methods of electrical engineering terminology in the field of the transmission line is carried out.展开更多
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba...Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk.展开更多
基金2024 Education and Teaching Reform Project of Hainan Tropical Ocean University(RHYxgnw2024-16)。
文摘This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.
基金supported by the National Natural Science Foundation of China(Grant Nos.41825018,41977248,42207219)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.
基金supported by the National Natural Science Foundation of China(42277180)China Geological Survey Project(DD20221816)+1 种基金National Key Research and Development Program of China(2021YFB2301403-5)State Key Laboratory of Resources and Environmental Information System.
文摘The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the planning and construction of major projects.For the long-term prevention and early control of regional seismic landslides,based on analyzing seismic landslide characteristics,the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%.The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons,and are significantly affected by the active tectonics.The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins,broad river valleys,and plateau planation planes.The major east-west linear projects mainly pass through five areas with high seismic landslide hazard:Luding-Kangding section,Yajiang-Xinlong(Yalong river)section,Batang-Baiyu(Jinsha river)section,Basu(Nujiang river)section,and Bomi-Linzhi(eastern Himalaya syntaxis)section.The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows.The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.
基金supported by the National Natural Science Foundation of China(42177184)the Balance Research Funds of the Chinese Academy of Geological Sciences(60)the China Geological Survey(DD20221816)。
文摘At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.
文摘The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use.
基金Sponsored by the National Science and Technology Innovation Fund for Small and Medium Enterprises(Grant No.10C26211200144)Tianjin Science and Technology Key Supporting Projects(Grant No.10ZCGYGX18300)
文摘Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.
基金This work was supported by Scientific Research Project of Department of Transportation of Hunan Province under Grant No.201814.
文摘Knowledge graph technology play a more and more important role in various fields of industry and academia.This paper firstly introduces the general framework of the knowledge graph construction,which includes three stages:information extraction,knowledge fusion and knowledge processing.In order to improve the efficiency of quality and safety supervision of transportation engineering construction,this paper constructs a knowledge graph by acquiring multi-sources heterogeneous data from supervision of transportation engineering quality and safety.It employs a bottom-up construction strategy and some natural language processing methods to solve the problems of the knowledge extraction for transportation engineering construction.We use the entity relation extraction method to extract the entity triples from the multi-sources heterogeneous data,and then employ knowledge inference to complete the edges in the constructed knowledge graph,finally perform quality evaluation to add the valid triples to the knowledge graph for updating.Subgraph matching technology is also exploited to retrieve the constructed knowledge graph for efficiently acquiring the useful knowledge about the quality and safety of transportation engineering projects.The results show that the constructed knowledge graph provides a practical and valuable tool for the quality and safety supervision of transportation engineering construction.
基金supported by the National Natural Science Foundation of China,Nos.81871408 and 81271631(to XMW)National Science Foundation for Young Scientists of China,No.81801658(to YZ)+1 种基金Outstanding Scientific Fund of Shengjing Hospital,No.201402(to XMW)345 Talent Support Project of Shengjing Hospital,No.30B(to YZ)。
文摘Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.
文摘The influence of modern electronic technology on communication engineering is explained in this paper.Based on the development status of communication engineering,the characteristics and application strategies of modern electronic technology in communication engineering are discussed,including the optimization and improvement of wireless communication system.
基金supported in part by the Ministry of Higher Education,Science and Research Innovation of Thailand.
文摘Visible Light Communication(VLC)technology is aggressive research for the next generation of communication.Currently,Radio Frequency(RF)communication has crowed spectrum.An Intelligent Transportation System(ITS)has been improved in the communication network for Vehicle-to-Vehicle(V2 V),Vehicle-to-Infrastructure(V2I),and Infrastructure-to-Vehicle(I2V)by using the visible light spectrum instead of the RF spectrum.This article studies the characterization of Line-of-Sight(LOS)optical performance in an Outdoor Wireless Visible Light Communication(OWVLC)system employing a Multiple-Input Multiple-Output(MIMO)technique for I2V communications in ITS regulations.We design the new configuration of the OWVLC-I2V system,which is an alternative approach to communication for I2V system at nighttime.The results show the Channel Impulse Response(CIR)of the LOS links in visible light communication for I2V system in ITS by investigating the receiver on the vehicle moving along the coverage communication area.Furthermore,the OWVLC-I2V system using the MIMO technique depicts the performance of throughput and Bit Error Rate(BER)vs.vehicle speed while the vehicle passes a street light.
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51125034)the National Natural Science Foundation of China(Grant Nos.51279046 and 50909037)the Fundamental Research Funds for the Central Universities(Grant No.2010B01114)
文摘By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Then a mathematical model is used to reveal the influence mechanism on hydrodynamic characteristics and sediment transport of the wading engineering groups such as a tide gate, a breakwater, reservoirs, bridges and wharves, which were built in different periods. The results showed the hydrodynamic characteristics and sediment transport of the Yong River changed obviously due to the wading engineering groups. The tide gate induced deformation of the tidal wave, obvious reduction of the tidal influx and weakness of the tidal dynamic, decrease of the sediment yield of flood and ebb tide and channel deposition. The breakwater blocked estuarine entrances, resulting in the change of the tidal current and the reduction of the tidal influx in the estuarine area. The large-scale reservoirs gradually made the decrease of the Yong River runoff. The bridge and wharf groups took up cross-section areas, the cumulative affection of which caused the increase of tidal level in the tidal river.
基金supported by the New&Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy(MOTIE),Republic of Korea(No.20213091010020)National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(2020R1A2C1101085)+2 种基金the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)and Korea Smart Farm R&D Foundation(KosFarm)through Smart Farm Innovation Technology Development Programfunded by the Ministry of Agriculture,Food and Rural Affairs(MAFRA)the Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(421036-03).
文摘Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination.
基金the National Key R&D Program of China-National Magnetic Confinement Fusion Science Program(No.2017YFE0300305).
文摘China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.
文摘With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries to participate in infrastructure construction,employing a win-win strategy in favor of the people and governments of both countries.Among the cooperation domains,our country’s electrical companies have achieved a series of remarkable results in the international Engineering,Procurement,and Construction(EPC)project market with their outstanding business capabilities and technical advantages.Nevertheless,some shortcomings cannot be overlooked,the most notable of which appears to be the impediment associated with engineering translation,which has always been an obsession among translators of Chinese companies.Taking the transmission line project in the Republic of Madagascar as an example,an analysis of French-Chinese translation methods of electrical engineering terminology in the field of the transmission line is carried out.
基金supported by the National Natural Science Foundation of China(Grant No.52004030)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202310016003)the Exchange Program of High-end Foreign Experts of Ministry of Science and Technology,China(Grant No.G2022178013L)。
文摘Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk.