期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature,High-Efficiency Carbon-Electrode CsPbBr_(3) Solar Cells 被引量:1
1
作者 Zeyang Zhang Weidong Zhu +10 位作者 Tianjiao Han Tianran Wang Wenming Chai Jiaduo Zhu He Xi Dazheng Chen Gang Lu Peng Dong Jincheng Zhang Chunfu Zhang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期168-175,共8页
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en... Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved. 展开更多
关键词 carbon-electrode perovskite solar cells crystal orientation engineering CsPbBr_(3) low temperature two-step sequential deposition
下载PDF
Applying the model driven generative domain engineering method to develop self-organizing architectural solutions for mobile robot
2
作者 LIANG Hai-hua ZHU Miao-liang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1652-1661,共10页
Model driven generative domain engineering (MDGDE) is a domain engineering method aiming to develop optimized, reusable architectures, components and aspects for application engineering. Agents are regarded in MDGDE a... Model driven generative domain engineering (MDGDE) is a domain engineering method aiming to develop optimized, reusable architectures, components and aspects for application engineering. Agents are regarded in MDGDE as special objects having more autonomy, and taking more initiative. Design of the agent involves three levels of activities: logical analysis and design, physical analysis, physical design. This classification corresponds to domain analysis and design, application analysis, and application design. Agent is an important analysis and design tool for MDGDE because it facilitates development of complex distributed system—the mobile robot. According to MDGDE, we designed a distributed communication middleware and a set of event-driven agents, which enables the robot to initiate actions adaptively to the dynamical changes in the environment. This paper describes our approach as well as its motivations and our practice. 展开更多
关键词 Domain engineering Agent oriented software engineering Mobile robot
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部