Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the a...Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications.展开更多
Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ...Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.展开更多
In the realm of orthopedics,the adoption of enhanced recovery after surgery(ERAS)protocols marks a significant stride towards enhancing patient well-being.By embracing a holistic approach that encompasses preoperative...In the realm of orthopedics,the adoption of enhanced recovery after surgery(ERAS)protocols marks a significant stride towards enhancing patient well-being.By embracing a holistic approach that encompasses preoperative counseling,dietary optimization,minimally invasive procedures,and early postoperative mobilization,these protocols have ushered in a new era of surgical care.Despite encountering hurdles like resistance to change and resource allocation challenges,the efficacy of ERAS protocols in improving clinical outcomes is undeniable.Noteworthy benefits include shortened hospital stays and bolstered improved patient-safety measures.Looking ahead,the horizon for ERAS in orthopedics appears bright,with an emphasis on tailoring care to individual needs,integrating cutting-edge technologies,and perpetuating research endeavors.This shift towards a more personalized,streamlined,and cost-efficient model of care underscores the transformative potential of ERAS in reshaping not only orthopedic surgery but also the journey to patient recovery.This editorial details the scope and future of ERAS in the orthopedic specialty.展开更多
Time-resolved measurement of atomic emission enhancement is performed by using a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet, synchronized with an orthogonal ns frequency-doubled Nd:YAG ...Time-resolved measurement of atomic emission enhancement is performed by using a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet, synchronized with an orthogonal ns frequency-doubled Nd:YAG laser pulse. The ultra-short pulse serves as an igniter of the gas jet, and the subsequent ns-laser pulse significantly enhances the atomic emission. Analysis shows that the contributions to the enhancement effect are made mainly by the bremsstrahlung radiation and cascade ionization.展开更多
This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhanc...This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.展开更多
High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,th...High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques.Here,we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry(I-OFDR),where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation.A weighted least square(WLS)cost function is first established,and then an iteration approach is used to minimize the cost function.Finally,the appropriate filter parameter is obtained according to the convergence results.In a proof-of-concept experiment,the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz.The time resolution is improved by 2.78times compared to the theoretical resolution limit of the inverse discrete Fourier transform(iDFT)algorithm.In addition,the OTD measurement error is below±0.8 ps.The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth,avoiding measurement errors induced by the dispersion effect.展开更多
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus...Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.展开更多
In the software engineering literature, it is commonly believed that economies of scale do not occur in case of software Development and Enhancement Projects (D&EP). Their per-unit cost does not decrease but increa...In the software engineering literature, it is commonly believed that economies of scale do not occur in case of software Development and Enhancement Projects (D&EP). Their per-unit cost does not decrease but increase with the growth of such projects product size. Thus this is diseconomies of scale that occur in them. The significance of this phenomenon results from the fact that it is commonly considered to be one of the fundamental objective causes of their low effectiveness. This is of particular significance with regard to Business Software Systems (BSS) D&EP characterized by exceptionally low effectiveness comparing to other software D&EP. Thus the paper aims at answering the following two questions: (1) Do economies of scale really not occur in BSS D&EP? (2) If economies of scale may occur in BSS D&EP, what factors are then promoting them? These issues classify into economics problems of software engineering research and practice.展开更多
This paper aims to present a case study that consists in the analysis of work effort per unit of software systems Development and Enhancement Projects (D&EP) depending on technological factors. That analysis was c...This paper aims to present a case study that consists in the analysis of work effort per unit of software systems Development and Enhancement Projects (D&EP) depending on technological factors. That analysis was commissioned by one of the largest public institutions in Poland. This is the COSMIC (Common Software Measurement International Consortium) function points method that is chosen by this institution as a point of reference for size of software systems developed/enhanced for supporting its functions and therefore this method is the base for the analysis of D&EP work effort per unit with regard to technological factors.展开更多
The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal q...The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.展开更多
Since the concept of enhanced recovery after surgery(ERAS)was introduced in the late 1990 s the idea of implementing specific interventions throughout the perioperative period to improve patient recovery has been prov...Since the concept of enhanced recovery after surgery(ERAS)was introduced in the late 1990 s the idea of implementing specific interventions throughout the perioperative period to improve patient recovery has been proven to be beneficial. Minimally invasive surgery is an integral component to ERAS and has dramatically improved post-operative outcomes. ERAS can be applicable to all surgical specialties with the core generic principles used together with added specialty specific interventions to allow for a comprehensive protocol,leading to improved clinical outcomes. Diffusion of ERAS into mainstream practice has been hindered due to minimal evidence to support individual facets and lack of method for monitoring and encouraging compliance. No single outcome measure fully captures recovery after surgery,rather multiple measures are necessary at each stage. More recently the pre-operative period has been the target of a number of strategies to improve clinical outcomes,described as prehabilitation. Innovation of technology in the surgical setting is also providing opportunities to overcome the challenges within ERAS,e.g.,the use of wearable activity monitors to record information and provide feedback and motivation to patients peri-operatively. Both modernising ERAS and providing evidence for key strategies across specialties will ultimately lead to better,more reliable patient outcomes.展开更多
Objective:To explore the clinical effect of perioperative nursing guided by the concept of enhanced recovery after surgery and summarize them.Methods:Pubmed,Chinese National Knowledge Infrastructure(CNKI),Chinese Biom...Objective:To explore the clinical effect of perioperative nursing guided by the concept of enhanced recovery after surgery and summarize them.Methods:Pubmed,Chinese National Knowledge Infrastructure(CNKI),Chinese Biomedical Literature Database(CBM),Wanfang Database,and VIP Database were searched to obtain the relevant literature involving enhanced recovery after surgery(ERAS)guidance,obtain the effective clinical data,review the reports in literature,and obtain the effective scheme.Results:Compared with the traditional nursing program,perioperative nursing principles guided by the concept of ERAS provide more accurate nursing care to patients and reduce the occurrence of intraoperative stress events through comprehensive nursing measures such as preoperative pre-rehabilitation measures,intraoperative body temperature and fluid management,postoperative analgesia,prevention of nausea and vomiting,early mobilization,catheter nursing,and better out-of-hospital follow-up.Conclusions:Perioperative nursing principles guided by the concept of ERAS can significantly reduce the incidence of perioperative complications,shorten the hospital stay of patients,and promote postoperative rehabilitation of patients.The transformation and implementation of this concept can bring significant benefits to hospitals,medical care,and patients.展开更多
SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR...SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.展开更多
A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix e...A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix enhancement and matrix pencil (MEMP) method which contains an additional step to pair the parameters related to each dimension. The downrange and crossrange expressions of the scattering centers are deduced, as well as the range ambiguities, from the point of view of MMEMP method. Compared with the Fourier transform method, the numerical simulation shows that both the resolution and precision of the MMEMP method are higher than those of the Fourier method. The processing results of the real measured data for three cylinders prove the above conclusions further.展开更多
The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
Environmental radioactivity is produced by radioactive materials in the human environment. While some radioisotopes, such as strontium-90 (90Sr) and technetium-99 (99Tc), are only found on Earth as a result of human a...Environmental radioactivity is produced by radioactive materials in the human environment. While some radioisotopes, such as strontium-90 (90Sr) and technetium-99 (99Tc), are only found on Earth as a result of human activity, and some, like potassium-40 (40K), are only present due to natural processes, a few isotopes, e.g. tritium (3H), result from both natural processes and human activities. The concentration and location of some natural isotopes, particularly uranium-238 (238U), can be affected by human activity because of the constant exposure of Human beings to radiation caused by terrestrial, extra-terrestrial and anthropogenic radio nuclides, it is necessary to determine and estimate the activity of various radio nuclides in environmental media such as vegetation, soil, and water. In the present research, the activities of 226Ra, 232Th and 40K are measured in soil, vegetation and water samples, collected from Yangdong District, Yangxi County, and Yangjiang County of Guangdong Province, China using an HPGe based gamma spectrometry system. The measured mean activity of 226Ra, 232Th and 40K in soil samples was found to be 31.19 ± 1.2, 47.00 ± 2.30 and 589.31 ± 17.52 Bqkg-1, respectively. The measured mean activity of these radionuclides in all water samples was found to be below minimum detectable activity. The measured mean activity of 226Ra, 232Th and 40K in vegetation samples was 19.92 ± 3.09, 25.36 ± 8.11 and 4982.94 ± 85.68 Bqkg-1, respectively. No anthropogenic 137Cs was detected in these environmental samples. Mean radium equivalent activity (Raeq), external radiation hazard index (Hex), internal radiation hazard index (Hin) and absorbed dose rate (D) for the area under study were determined as 142.92 Bqkg-1, 0.38, 0.47 and 66.47 nGyh-1, respectively. The annual effective dose equivalent (AEDE) varied in the range from 0.03 to 0.12 mSvy-1. It is concluded that the surveyed area do not pose any significant radiological risk to the population and environment.展开更多
基金Project supported by National Key Research and Development Program of China (Grant No.2022YFA1603403)。
文摘Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications.
基金supported by the State Grid Jilin Province Electric Power Co,Ltd-Research and Application of Power Grid Resilience Assessment and Coordinated Emergency Technology of Supply and Network for the Development of New Power System in Alpine Region(Project Number is B32342210001).
文摘Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.
文摘In the realm of orthopedics,the adoption of enhanced recovery after surgery(ERAS)protocols marks a significant stride towards enhancing patient well-being.By embracing a holistic approach that encompasses preoperative counseling,dietary optimization,minimally invasive procedures,and early postoperative mobilization,these protocols have ushered in a new era of surgical care.Despite encountering hurdles like resistance to change and resource allocation challenges,the efficacy of ERAS protocols in improving clinical outcomes is undeniable.Noteworthy benefits include shortened hospital stays and bolstered improved patient-safety measures.Looking ahead,the horizon for ERAS in orthopedics appears bright,with an emphasis on tailoring care to individual needs,integrating cutting-edge technologies,and perpetuating research endeavors.This shift towards a more personalized,streamlined,and cost-efficient model of care underscores the transformative potential of ERAS in reshaping not only orthopedic surgery but also the journey to patient recovery.This editorial details the scope and future of ERAS in the orthopedic specialty.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474081).
文摘Time-resolved measurement of atomic emission enhancement is performed by using a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet, synchronized with an orthogonal ns frequency-doubled Nd:YAG laser pulse. The ultra-short pulse serves as an igniter of the gas jet, and the subsequent ns-laser pulse significantly enhances the atomic emission. Analysis shows that the contributions to the enhancement effect are made mainly by the bremsstrahlung radiation and cascade ionization.
文摘This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Nos.62075095 and 62271249)the Key Research and Development Program of Jiangsu Province(No.BE2020030)。
文摘High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques.Here,we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry(I-OFDR),where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation.A weighted least square(WLS)cost function is first established,and then an iteration approach is used to minimize the cost function.Finally,the appropriate filter parameter is obtained according to the convergence results.In a proof-of-concept experiment,the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz.The time resolution is improved by 2.78times compared to the theoretical resolution limit of the inverse discrete Fourier transform(iDFT)algorithm.In addition,the OTD measurement error is below±0.8 ps.The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth,avoiding measurement errors induced by the dispersion effect.
基金supported by the National Natural Science Foundation of China (Grant Nos.52276185,52276189 and 51976057)the Fundamental Research Funds for the Central Universities (Grant No.2021MS126)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20231209)the Proof-of-Concept Project of Zhongguancun Open Laboratory (Grant No.20220981113)。
文摘Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.
文摘In the software engineering literature, it is commonly believed that economies of scale do not occur in case of software Development and Enhancement Projects (D&EP). Their per-unit cost does not decrease but increase with the growth of such projects product size. Thus this is diseconomies of scale that occur in them. The significance of this phenomenon results from the fact that it is commonly considered to be one of the fundamental objective causes of their low effectiveness. This is of particular significance with regard to Business Software Systems (BSS) D&EP characterized by exceptionally low effectiveness comparing to other software D&EP. Thus the paper aims at answering the following two questions: (1) Do economies of scale really not occur in BSS D&EP? (2) If economies of scale may occur in BSS D&EP, what factors are then promoting them? These issues classify into economics problems of software engineering research and practice.
文摘This paper aims to present a case study that consists in the analysis of work effort per unit of software systems Development and Enhancement Projects (D&EP) depending on technological factors. That analysis was commissioned by one of the largest public institutions in Poland. This is the COSMIC (Common Software Measurement International Consortium) function points method that is chosen by this institution as a point of reference for size of software systems developed/enhanced for supporting its functions and therefore this method is the base for the analysis of D&EP work effort per unit with regard to technological factors.
基金supported by the National Natural Science Foundation of China(Grants No.11247294)the Research Foundation of Education Bureau of Hunan Province,China(Grant No.12C0826)+2 种基金the Doctor Foundation Startup from Hunan University of Arts and Science,China(Grant No.13101039)the Key Laboratory of Photoelectricity Information Integration and Optics Manufacture Technology in Hunan Province,Chinathe Construct Program of the Key Discipline in Hunan University of Arts and Science(Optics),China
文摘The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.
文摘Since the concept of enhanced recovery after surgery(ERAS)was introduced in the late 1990 s the idea of implementing specific interventions throughout the perioperative period to improve patient recovery has been proven to be beneficial. Minimally invasive surgery is an integral component to ERAS and has dramatically improved post-operative outcomes. ERAS can be applicable to all surgical specialties with the core generic principles used together with added specialty specific interventions to allow for a comprehensive protocol,leading to improved clinical outcomes. Diffusion of ERAS into mainstream practice has been hindered due to minimal evidence to support individual facets and lack of method for monitoring and encouraging compliance. No single outcome measure fully captures recovery after surgery,rather multiple measures are necessary at each stage. More recently the pre-operative period has been the target of a number of strategies to improve clinical outcomes,described as prehabilitation. Innovation of technology in the surgical setting is also providing opportunities to overcome the challenges within ERAS,e.g.,the use of wearable activity monitors to record information and provide feedback and motivation to patients peri-operatively. Both modernising ERAS and providing evidence for key strategies across specialties will ultimately lead to better,more reliable patient outcomes.
基金supported by Emerging industry leading talent project of Shanxi Province(No.[2020]587)。
文摘Objective:To explore the clinical effect of perioperative nursing guided by the concept of enhanced recovery after surgery and summarize them.Methods:Pubmed,Chinese National Knowledge Infrastructure(CNKI),Chinese Biomedical Literature Database(CBM),Wanfang Database,and VIP Database were searched to obtain the relevant literature involving enhanced recovery after surgery(ERAS)guidance,obtain the effective clinical data,review the reports in literature,and obtain the effective scheme.Results:Compared with the traditional nursing program,perioperative nursing principles guided by the concept of ERAS provide more accurate nursing care to patients and reduce the occurrence of intraoperative stress events through comprehensive nursing measures such as preoperative pre-rehabilitation measures,intraoperative body temperature and fluid management,postoperative analgesia,prevention of nausea and vomiting,early mobilization,catheter nursing,and better out-of-hospital follow-up.Conclusions:Perioperative nursing principles guided by the concept of ERAS can significantly reduce the incidence of perioperative complications,shorten the hospital stay of patients,and promote postoperative rehabilitation of patients.The transformation and implementation of this concept can bring significant benefits to hospitals,medical care,and patients.
文摘SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.
文摘A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix enhancement and matrix pencil (MEMP) method which contains an additional step to pair the parameters related to each dimension. The downrange and crossrange expressions of the scattering centers are deduced, as well as the range ambiguities, from the point of view of MMEMP method. Compared with the Fourier transform method, the numerical simulation shows that both the resolution and precision of the MMEMP method are higher than those of the Fourier method. The processing results of the real measured data for three cylinders prove the above conclusions further.
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.
文摘Environmental radioactivity is produced by radioactive materials in the human environment. While some radioisotopes, such as strontium-90 (90Sr) and technetium-99 (99Tc), are only found on Earth as a result of human activity, and some, like potassium-40 (40K), are only present due to natural processes, a few isotopes, e.g. tritium (3H), result from both natural processes and human activities. The concentration and location of some natural isotopes, particularly uranium-238 (238U), can be affected by human activity because of the constant exposure of Human beings to radiation caused by terrestrial, extra-terrestrial and anthropogenic radio nuclides, it is necessary to determine and estimate the activity of various radio nuclides in environmental media such as vegetation, soil, and water. In the present research, the activities of 226Ra, 232Th and 40K are measured in soil, vegetation and water samples, collected from Yangdong District, Yangxi County, and Yangjiang County of Guangdong Province, China using an HPGe based gamma spectrometry system. The measured mean activity of 226Ra, 232Th and 40K in soil samples was found to be 31.19 ± 1.2, 47.00 ± 2.30 and 589.31 ± 17.52 Bqkg-1, respectively. The measured mean activity of these radionuclides in all water samples was found to be below minimum detectable activity. The measured mean activity of 226Ra, 232Th and 40K in vegetation samples was 19.92 ± 3.09, 25.36 ± 8.11 and 4982.94 ± 85.68 Bqkg-1, respectively. No anthropogenic 137Cs was detected in these environmental samples. Mean radium equivalent activity (Raeq), external radiation hazard index (Hex), internal radiation hazard index (Hin) and absorbed dose rate (D) for the area under study were determined as 142.92 Bqkg-1, 0.38, 0.47 and 66.47 nGyh-1, respectively. The annual effective dose equivalent (AEDE) varied in the range from 0.03 to 0.12 mSvy-1. It is concluded that the surveyed area do not pose any significant radiological risk to the population and environment.