期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhanced Clustering Based OSN Privacy Preservation to Ensure k-Anonymity, t-Closeness, l-Diversity, and Balanced Privacy Utility 被引量:2
1
作者 Rupali Gangarde Amit Sharma Ambika Pawar 《Computers, Materials & Continua》 SCIE EI 2023年第4期2171-2190,共20页
Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, gua... Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, guaranteeing various levels of privacy is critical while publishingdata by OSNs. The clustering-based solutions proved an effective mechanismto achieve the privacy notions in OSNs. But fixed clustering limits theperformance and scalability. Data utility degrades with increased privacy,so balancing the privacy utility trade-off is an open research issue. Theresearch has proposed a novel privacy preservation model using the enhancedclustering mechanism to overcome this issue. The proposed model includesphases like pre-processing, enhanced clustering, and ensuring privacy preservation.The enhanced clustering algorithm is the second phase where authorsmodified the existing fixed k-means clustering using the threshold approach.The threshold value is determined based on the supplied OSN data of edges,nodes, and user attributes. Clusters are k-anonymized with multiple graphproperties by a novel one-pass algorithm. After achieving the k-anonymityof clusters, optimization was performed to achieve all privacy models, suchas k-anonymity, t-closeness, and l-diversity. The proposed privacy frameworkachieves privacy of all three network components, i.e., link, node, and userattributes, with improved utility. The authors compare the proposed techniqueto underlying methods using OSN Yelp and Facebook datasets. The proposedapproach outperformed the underlying state of art methods for Degree ofAnonymization, computational efficiency, and information loss. 展开更多
关键词 enhanced clustering online social network K-ANONYMITY t-closeness l-diversity privacy preservation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部