This paper presents an enhanced multi-baseline phase unwrapping algorithm by combining an unscented Kalman filter with an enhanced joint phase gradient estimator based on the amended matrix pencil model, and an optima...This paper presents an enhanced multi-baseline phase unwrapping algorithm by combining an unscented Kalman filter with an enhanced joint phase gradient estimator based on the amended matrix pencil model, and an optimal path-following strategy based on phase quality estimate function. The enhanced joint phase gradient estimator can accurately and effectively extract the phase gradient information of wrapped pixels from noisy interferograms, which greatly increases the performances of the proposed method. The optimal path-following strategy ensures that the proposed algorithm simultaneously performs noise suppression and phase unwrapping along the pixels with high-reliance to the pixels with low-reliance. Accordingly, the proposed algorithm can be predicted to obtain better results, with respect to some other algorithms, as will be demonstrated by the results obtained from synthetic data.展开更多
Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to requi...Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to require these techniques. In real time, images do not contain a single noise, and instead they contain multiple types of noise distributions in several indistinct regions. This paper presents an image denoising method that uses Metaheuristics to perform noise identification. Adaptive block selection is used to identify and correct the noise contained in these blocks. Though the system uses a block selection scheme, modifications are performed on pixel- to-pixel basis and not on the entire blocks;hence the image accuracy is preserved. PSO is used to identify the noise distribution, and appropriate noise correction techniques are applied to denoise the images. Experiments were conducted using salt and pepper noise, Gaussian noise and a combination of both the noise in the same image. It was observed that the proposed method performed effectively on noise levels up-to 0.5 and was able to produce results with PSNR values ranging from 20 to 30 in most of the cases. Excellent reduction rates were observed on salt and pepper noise and moderate reduction rates were observed on Gaussian noise. Experimental results show that our proposed system has a wide range of applicability in any domain specific image denoising scenario, such as medical imaging, mammogram etc.展开更多
The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critica...The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas.展开更多
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ...Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.展开更多
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV col...A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.展开更多
Several X-ray phase visualization methods are being real- ized for imaging of phase objects, such as biological and polymeric specimens. Grating-based phase-contrast imaging using a source-grating-attached X-ray tube ...Several X-ray phase visualization methods are being real- ized for imaging of phase objects, such as biological and polymeric specimens. Grating-based phase-contrast imaging using a source-grating-attached X-ray tube that provides partially coherent X rays is one of the most successful methods in this field.展开更多
We propose improved multilevel filters (IMLFs) involving the absolute value operation into the algorithmic framework of traditional multilevel filters (MLFs) to improve the robustness of infrared small target enha...We propose improved multilevel filters (IMLFs) involving the absolute value operation into the algorithmic framework of traditional multilevel filters (MLFs) to improve the robustness of infrared small target enhancement techniques under a complex infrared cluttered background. Compared with the widely used small target enhancement methods which only deal with bright targets, the proposed technique can enhance the infrared small target, whether it is bright or dark. Experimental results verify that the proposed technique is efficient and practical.展开更多
基金supported by the National Natural Science Foundation of China(4120147961261033+2 种基金61461011)the Guangxi Natural Science Foundation(2014GXNSFBA118273)the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing(GXKL061503)
文摘This paper presents an enhanced multi-baseline phase unwrapping algorithm by combining an unscented Kalman filter with an enhanced joint phase gradient estimator based on the amended matrix pencil model, and an optimal path-following strategy based on phase quality estimate function. The enhanced joint phase gradient estimator can accurately and effectively extract the phase gradient information of wrapped pixels from noisy interferograms, which greatly increases the performances of the proposed method. The optimal path-following strategy ensures that the proposed algorithm simultaneously performs noise suppression and phase unwrapping along the pixels with high-reliance to the pixels with low-reliance. Accordingly, the proposed algorithm can be predicted to obtain better results, with respect to some other algorithms, as will be demonstrated by the results obtained from synthetic data.
文摘Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to require these techniques. In real time, images do not contain a single noise, and instead they contain multiple types of noise distributions in several indistinct regions. This paper presents an image denoising method that uses Metaheuristics to perform noise identification. Adaptive block selection is used to identify and correct the noise contained in these blocks. Though the system uses a block selection scheme, modifications are performed on pixel- to-pixel basis and not on the entire blocks;hence the image accuracy is preserved. PSO is used to identify the noise distribution, and appropriate noise correction techniques are applied to denoise the images. Experiments were conducted using salt and pepper noise, Gaussian noise and a combination of both the noise in the same image. It was observed that the proposed method performed effectively on noise levels up-to 0.5 and was able to produce results with PSNR values ranging from 20 to 30 in most of the cases. Excellent reduction rates were observed on salt and pepper noise and moderate reduction rates were observed on Gaussian noise. Experimental results show that our proposed system has a wide range of applicability in any domain specific image denoising scenario, such as medical imaging, mammogram etc.
文摘The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas.
基金provided by the Heilongjiang Provincial Department of Education Planning Project (No.GBC1212076)the Central University Research Project (No.00-800015Q7)
文摘Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.
基金supported by the China Scholarship CouncilPostgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of NUPT(No.NY214039)
文摘A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
基金supported by the research fund of Dankook University(No.R000122495)
文摘Several X-ray phase visualization methods are being real- ized for imaging of phase objects, such as biological and polymeric specimens. Grating-based phase-contrast imaging using a source-grating-attached X-ray tube that provides partially coherent X rays is one of the most successful methods in this field.
基金supported by the National Natural Science Foundation of China (No. 60736010)the Arm Pre-Research Key Foundation of China (No.9140A01040309JW0505)
文摘We propose improved multilevel filters (IMLFs) involving the absolute value operation into the algorithmic framework of traditional multilevel filters (MLFs) to improve the robustness of infrared small target enhancement techniques under a complex infrared cluttered background. Compared with the widely used small target enhancement methods which only deal with bright targets, the proposed technique can enhance the infrared small target, whether it is bright or dark. Experimental results verify that the proposed technique is efficient and practical.