BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal gangli...BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles with ultrasound was significantly greater than the other groups, and no obvious damage was detected in the RGCs. CONCLUSION: Under irradiation of low-frequency ultrasound waves, ultrasound-mediated microbubble destruction was effective and resulted in safe transfection of the EGFP gene to the RGCs.展开更多
As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of a...As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was devel- oped for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic pu- rity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of ex- citation and emission maxima, indicating that the purification procedure did not influence the construct and fluo- rescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.展开更多
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inne...Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.展开更多
目的探讨超声微泡破碎技术介导增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因在兔骨缺损处转染时,不同途径注射质粒微泡混悬液对转染效率及局部组织的影响。方法3月龄新西兰大白兔10只,制备右尺骨骨缺损模型,按照...目的探讨超声微泡破碎技术介导增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因在兔骨缺损处转染时,不同途径注射质粒微泡混悬液对转染效率及局部组织的影响。方法3月龄新西兰大白兔10只,制备右尺骨骨缺损模型,按照随机数字表法分为静脉组和断端间组(n=5)。静脉组和断端间组造模后第10天分别经耳缘静脉或骨缺损断端间向兔体内注射携带EGFP基因的质粒微泡混悬液(0.3 ml/kg)。在超声频率1 MHz,超声强度1.0 W/cm^(2),占空比20%条件下,对两组骨缺损部位超声辐照1 min,进行EGFP基因转染。在基因转染后1周时处死兔,于骨缺损处获取标本制作切片,荧光染色观察各组EGFP表达情况。采用病理图像分析软件分析计算平均光密度。HE染色观察断端间软组织病理特点。结果静脉组和断端间组均观察到绿色荧光蛋白表达。断端间组平均光密度高于静脉组,差异有统计学意义(0.0345±0.0028 vs 0.0004±0.0001,P<0.05)。表达绿色荧光蛋白的细胞主要为骨骼肌细胞,各组未见细胞坏死征象。结论超声微泡破碎技术介导EGFP基因在兔骨缺损处转染时,其效率受不同途径注射质粒微泡混悬液的影响,骨缺损断端间直接注射优于静脉注射。展开更多
[Objective] The research aimed to construct the fusion protein expression vector of α-galactosidase-EGFP (enhanced green fluorescent protein) in cucumber controlled by CaMV35S promoter.[Method] CaMV35S promoter seq...[Objective] The research aimed to construct the fusion protein expression vector of α-galactosidase-EGFP (enhanced green fluorescent protein) in cucumber controlled by CaMV35S promoter.[Method] CaMV35S promoter sequence and the coding region of EGFP were amplified by polymerase chain reactions (PCR) with vector pCambia 1303 as the template.Using reverse transcript PCR technology,with total RNAs of cucumber as template,the coding region of acid α-galactosidase Ⅰ in cucumber was amplified.The above three fragments were inserted into the multiple cloning sites of expression vector pCambia 1381c.The fusion expression vector of α-galactosidase-EGFP located at the C-terminal of the target genes was constructed.[Result] After enzyme digestion and sequencing,the fusion expression of α-galactosidase-EGFP in cucumber was constructed successfully.[Conclusion] The research laid the experimental basis for further study on the subcellular localization of α-galactosidase in cucumber.展开更多
将增强的绿色荧光蛋白 ( enhanced green fluorescent protein,EGFP)基因插在 HCMV( hum ancytom egolovirus)启动子下游 ,构建了表达质粒 p CA13 - e G,用脂质体 L ipofectin介导分别转染 He L a细胞、Vero细胞 ,仅通过细胞传代 ,就获...将增强的绿色荧光蛋白 ( enhanced green fluorescent protein,EGFP)基因插在 HCMV( hum ancytom egolovirus)启动子下游 ,构建了表达质粒 p CA13 - e G,用脂质体 L ipofectin介导分别转染 He L a细胞、Vero细胞 ,仅通过细胞传代 ,就获得了能稳定高效表达 EGFP的绿色细胞 .比较发现 ,质粒 p CA13 - e G转染后 ,产生能高效表达 EGFP的 He L a细胞其比率高于 Vero细胞 ;EGFP高效表达对 Vero细胞的毒性大于对 He L a细胞的毒性 .本研究表明 ,绿色细胞轮廓清晰 ,由于其特有的性质 ,在用于细胞的形态观察、细胞分裂等研究时会有所作为 .展开更多
基金the National Natural Science Foundation of China,No.30430230
文摘BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles with ultrasound was significantly greater than the other groups, and no obvious damage was detected in the RGCs. CONCLUSION: Under irradiation of low-frequency ultrasound waves, ultrasound-mediated microbubble destruction was effective and resulted in safe transfection of the EGFP gene to the RGCs.
基金Supported by the National Natural Science Foundation of China (No. 20306024, No. 20476082), Tianjin Applied FundamentalResearch Project (No. 0436048-11) and the Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China.
文摘As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was devel- oped for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic pu- rity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of ex- citation and emission maxima, indicating that the purification procedure did not influence the construct and fluo- rescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.
基金National Natural Science Foundation of China (Grant Nos 30470074,30671615)Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-N-021).
文摘Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.
文摘目的探讨超声微泡破碎技术介导增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因在兔骨缺损处转染时,不同途径注射质粒微泡混悬液对转染效率及局部组织的影响。方法3月龄新西兰大白兔10只,制备右尺骨骨缺损模型,按照随机数字表法分为静脉组和断端间组(n=5)。静脉组和断端间组造模后第10天分别经耳缘静脉或骨缺损断端间向兔体内注射携带EGFP基因的质粒微泡混悬液(0.3 ml/kg)。在超声频率1 MHz,超声强度1.0 W/cm^(2),占空比20%条件下,对两组骨缺损部位超声辐照1 min,进行EGFP基因转染。在基因转染后1周时处死兔,于骨缺损处获取标本制作切片,荧光染色观察各组EGFP表达情况。采用病理图像分析软件分析计算平均光密度。HE染色观察断端间软组织病理特点。结果静脉组和断端间组均观察到绿色荧光蛋白表达。断端间组平均光密度高于静脉组,差异有统计学意义(0.0345±0.0028 vs 0.0004±0.0001,P<0.05)。表达绿色荧光蛋白的细胞主要为骨骼肌细胞,各组未见细胞坏死征象。结论超声微泡破碎技术介导EGFP基因在兔骨缺损处转染时,其效率受不同途径注射质粒微泡混悬液的影响,骨缺损断端间直接注射优于静脉注射。
基金Supported by National Basic Research Program of China( 2009CB119000)National Natural Science Foundation(30871721)~~
文摘[Objective] The research aimed to construct the fusion protein expression vector of α-galactosidase-EGFP (enhanced green fluorescent protein) in cucumber controlled by CaMV35S promoter.[Method] CaMV35S promoter sequence and the coding region of EGFP were amplified by polymerase chain reactions (PCR) with vector pCambia 1303 as the template.Using reverse transcript PCR technology,with total RNAs of cucumber as template,the coding region of acid α-galactosidase Ⅰ in cucumber was amplified.The above three fragments were inserted into the multiple cloning sites of expression vector pCambia 1381c.The fusion expression vector of α-galactosidase-EGFP located at the C-terminal of the target genes was constructed.[Result] After enzyme digestion and sequencing,the fusion expression of α-galactosidase-EGFP in cucumber was constructed successfully.[Conclusion] The research laid the experimental basis for further study on the subcellular localization of α-galactosidase in cucumber.
文摘将增强的绿色荧光蛋白 ( enhanced green fluorescent protein,EGFP)基因插在 HCMV( hum ancytom egolovirus)启动子下游 ,构建了表达质粒 p CA13 - e G,用脂质体 L ipofectin介导分别转染 He L a细胞、Vero细胞 ,仅通过细胞传代 ,就获得了能稳定高效表达 EGFP的绿色细胞 .比较发现 ,质粒 p CA13 - e G转染后 ,产生能高效表达 EGFP的 He L a细胞其比率高于 Vero细胞 ;EGFP高效表达对 Vero细胞的毒性大于对 He L a细胞的毒性 .本研究表明 ,绿色细胞轮廓清晰 ,由于其特有的性质 ,在用于细胞的形态观察、细胞分裂等研究时会有所作为 .