Various ion sources are key components to prepare functional coatings,such as diamond-like carbon(DLC)films.In this article,we present our trying of surface modification on basis of Si-incorporation diamond-like carbo...Various ion sources are key components to prepare functional coatings,such as diamond-like carbon(DLC)films.In this article,we present our trying of surface modification on basis of Si-incorporation diamond-like carbon(Si-DLC)produced by a magnetic field enhanced radio frequency ion source,which is established to get high density plasma with the help of magnetic field.Under proper deposition process,a contact angle of 111°hydrophobic surface was achieved without any surface patterning,where nanostructure SiC grains appeared within the amorphous microstructure.The surface property was influenced by ion flow parameters as well as the resultant surface microstructure.The magnetic field enhanced radio frequency ion source developed in this paper was useful for protective film applications.展开更多
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the...Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.展开更多
Thermoelectric materials can be used to convert heat to electric power through the Seebeck effect. We study magneto-thermoelectric figure of merit (ZT) in three-dimensional Dirac semimetal Cd3A 5 2 crystal. It is fo...Thermoelectric materials can be used to convert heat to electric power through the Seebeck effect. We study magneto-thermoelectric figure of merit (ZT) in three-dimensional Dirac semimetal Cd3A 5 2 crystal. It is found that enhancement of power factor and reduction of thermal conductivity can be realized at the same time through magnetic field although magnetoresistivity is greatly increased. ZT can be highly enhanced from 0.17 to 1.1 by more than six times around 350 K under a perpendicular magnetic field of 7 T. The huge enhancement of ZT by magnetic field arises from the linear Dirac band with large Fermi velocity and the large electric thermal conductivity in CdsA 5 2. Our work paves a new way to greatly enhance the thermoelectric performance in the quantum topological materials.展开更多
Metamaterial absorbers show great promise for applications in optical manipulation,photodetection,solar energy harvesting,and photocatalysis.In this work,we present a twisted stacked metamaterial design that serves as...Metamaterial absorbers show great promise for applications in optical manipulation,photodetection,solar energy harvesting,and photocatalysis.In this work,we present a twisted stacked metamaterial design that serves as a plasmonic perfect absorber with polarization selectivity.Leveraging effective energy localization,the metamaterial realizes a near-unity absorbance of up to 99.6%for right circularly polarized incidence and 97.2%for left circularly polarized incidence.At a longer wavelength in the visible range,the chiral metamaterial becomes more sensitive to the polarization state of the incident wave,retaining an ultrahigh absorption of light(~94%)for only a given polarization state,that is,light in this polarization state is effectively shielded.A giant circular dichroism signal of up to 7°can be simultaneously observed.Electromagnetic field and charge distribution simulations further reveal that the ultrahigh performance of the design is attributed to the interplay between cavity coupling,magnetic resonances,and plasmonic coupling.Besides switchable and tunable chirality,the plasmonic metamaterial presents a nearperfect absorption band with tunable operational wavelengths.We envision that the high-performance chiral gold metamaterial proposed here can serve as a good candidate for light trapping,chirality sensing,polarized light detection,and polarizationenhanced photocatalysis.展开更多
文摘Various ion sources are key components to prepare functional coatings,such as diamond-like carbon(DLC)films.In this article,we present our trying of surface modification on basis of Si-incorporation diamond-like carbon(Si-DLC)produced by a magnetic field enhanced radio frequency ion source,which is established to get high density plasma with the help of magnetic field.Under proper deposition process,a contact angle of 111°hydrophobic surface was achieved without any surface patterning,where nanostructure SiC grains appeared within the amorphous microstructure.The surface property was influenced by ion flow parameters as well as the resultant surface microstructure.The magnetic field enhanced radio frequency ion source developed in this paper was useful for protective film applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183,11104252,61274012,and 51072184)the Specialized Re-search Fund for the Doctoral Program of Higher Education of China(Grant No.20114101110003)+4 种基金the Aeronautical Science Foundation of China(Grant No.2011ZF55015)the Basic and Frontier Technology Research Program of Henan Province,China(Grant Nos.112300410264 and 122300410162)the Foundation of University Young Key Teacher from Henan Province,China(Grant No.2012GGJS-146)the Key Program of Science and Technology of Henan Education Department,China(Grant Nos.12A140014 and 13A140693)the Postdoctoral Research Sponsorship of Henan Province,China(Grant No.2011002)
文摘Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.
基金supported by the National Key R&D Program of the Ministry of Science and Technology China(2017YFA0303001,2016YFA0300201 and 2017YFA0204904)the National Natural Science Foundation of China(11534010,11774325 and21603210)+4 种基金the Key Research Program of Frontier Sciences CAS(QYZDY-SSW-SLH021)Hefei Science Center CAS(2016HSCIU001)the Fundamental Research Funds for the Central UniversitiesSupercomputing Center at USTC for providing the computing resourcespartially performed on the Superconducting Magnet and PPMS-16T Facilities,High Magnetic Field Laboratory of CAS
文摘Thermoelectric materials can be used to convert heat to electric power through the Seebeck effect. We study magneto-thermoelectric figure of merit (ZT) in three-dimensional Dirac semimetal Cd3A 5 2 crystal. It is found that enhancement of power factor and reduction of thermal conductivity can be realized at the same time through magnetic field although magnetoresistivity is greatly increased. ZT can be highly enhanced from 0.17 to 1.1 by more than six times around 350 K under a perpendicular magnetic field of 7 T. The huge enhancement of ZT by magnetic field arises from the linear Dirac band with large Fermi velocity and the large electric thermal conductivity in CdsA 5 2. Our work paves a new way to greatly enhance the thermoelectric performance in the quantum topological materials.
基金This work was supported by the National Natural Science Foundation of China(No.21975060,X.L.W.)Youth Innovation Promotion Association CAS(No.2019039,X.L.W.)+3 种基金This work was also supported by financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000,Z.Y.T.)National Key Basic Research Program of China(No.2016YFA0200700,Z.Y.T.)National Natural Science Foundation of China(Nos.92056204,21890381,and 21721002,Z.Y.T.)Frontier Science Key Project of Chinese Academy of Sciences(No.QYZDJ-SSWSLH038,Z.Y.T.).
文摘Metamaterial absorbers show great promise for applications in optical manipulation,photodetection,solar energy harvesting,and photocatalysis.In this work,we present a twisted stacked metamaterial design that serves as a plasmonic perfect absorber with polarization selectivity.Leveraging effective energy localization,the metamaterial realizes a near-unity absorbance of up to 99.6%for right circularly polarized incidence and 97.2%for left circularly polarized incidence.At a longer wavelength in the visible range,the chiral metamaterial becomes more sensitive to the polarization state of the incident wave,retaining an ultrahigh absorption of light(~94%)for only a given polarization state,that is,light in this polarization state is effectively shielded.A giant circular dichroism signal of up to 7°can be simultaneously observed.Electromagnetic field and charge distribution simulations further reveal that the ultrahigh performance of the design is attributed to the interplay between cavity coupling,magnetic resonances,and plasmonic coupling.Besides switchable and tunable chirality,the plasmonic metamaterial presents a nearperfect absorption band with tunable operational wavelengths.We envision that the high-performance chiral gold metamaterial proposed here can serve as a good candidate for light trapping,chirality sensing,polarized light detection,and polarizationenhanced photocatalysis.