CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio...CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.展开更多
Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, th...Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, the application of nanoparticles with low-salinity water flooding has shown remarkable results in enhanced oil recovery(EOR). Many studies have been performed on the effect of nanofluids on EOR mechanisms. Their results showed that nanofluids can improve oil recovery when used in low-salinity water flooding. In this work, the effects of injection of low-salinity water and low-salinity nanofluid(prepared by adding SiO_2 nanoparticles to low-salinity water) on oil recovery were investigated. At first, the effects of ions were investigated with equal concentrations in low-salinity water flooding. The experimental results showed that the monovalent ions had better performance than the divalent ions because of them having more negative zeta potential and less ionic strength. Also, low-salinity water flooding recovered 6.1% original oil in place(OOIP) more than the high-salinity flooding. Contact angle measurements demonstrated that low-salinity water could reduce the contact angle between oil and water. Then in the second stage, experiments were continued by adding SiO_2 nanoparticles to the K+ solution which had the highest oil recovery at the first stage. The experimental results illustrated that the addition of Si02 nanoparticles up to 0.05 wt% increased oil recovery by about 4% OOIP more than the low-salinity water flooding.展开更多
To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D v...To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity.展开更多
Smart water flooding,as a popular method to change the wettability of carbonate rocks,is one of the interesting and challenging issues in reservoir engineering.In addition,the recent studies show that nanoparticles ha...Smart water flooding,as a popular method to change the wettability of carbonate rocks,is one of the interesting and challenging issues in reservoir engineering.In addition,the recent studies show that nanoparticles have a great potential for application in EOR processes.However,little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery.In this study,stability,contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO4^2- and Ca^2+ ions in the presence of nanofluid on EOR processes.The amine/organosiloxane@Al2O3/SiO2(AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here.However,for the first time the application of this nanocomposite along with smart water has been studied in this research.Results show that by increasing the concentrations of calcium and sulfate ions in smart water,oil recovery is improved by 9% and 10%,respectively,compared to seawater.In addition,the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery.Finally,the best performance was observed in smart water containing two times of sulfate ions concentration(SW2 S) with nanofluids,showing increased efficiency of about 7.5%.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.Th...Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.展开更多
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the ef...An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments.展开更多
When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are p...When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are present in formation water,they react chemically with SO;, and BaSO;is precipitated. These reactions can cause a serious impact on the efficiency of enhanced oil recovery(EOR). Therefore, the main purpose of this study was to identify EOR efficiency induced by lowsalinity waterflooding(LSWF) when Ba;is present in carbonate reservoirs. From the experimental results, it was confirmed that the permeability calculated by the measured pressure difference was improved because of rock dissolution predominating over in situ precipitation for the case of low Ba;concentrations. In the analysis of wettability alteration through the measurements of relative permeabilities before and after LSWF, the higher Ba;concentration case consumed more SO;in precipitating the BaSO;, resulting in weaker wettability alteration due to the reduction of sulfate activity.These phenomena ultimately influenced EOR efficiency, i.e., the oil recovery was greater for the lower Ba;concentration.展开更多
Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performance...Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performances of ordinary polymer,glycerol,polymer in"sheet-net"structure and heterogeneous weak gel at the same viscosity and concentration,the relationship between the viscosity of polymer displacement agents and displacement performance was demonstrated,and the method of improving polymer flooding effect was worked out.The main mechanism of polymer flooding to increase oil recovery is the swept volume expansion of water injection due to polymer retention in porous media.The viscosity of polymer agents has no positive correlation with polymer flooding effect.Although polymer of"sheet-net"structure has strong capacity in increasing viscosity,it has poor compatibility with pore throat structure of reservoir rock,low injectivity and low shear resistance.Heterogeneous weak gel system has higher adsorption and capture capacity in porous media,which is easy to retain in porous media,and can effectively establish seepage resistance in high permeability layers(zones).Compared with polymer solutions with the same viscosity or concentration,it has stronger ability to expand swept volume.Long term injection of polymer flooding agents will inevitably lead to fluid entry profile reversal,and thus worsening of polymer flooding effect.Alternate injection of high retention and low or non-retention displacement agents can further improve the displacement effect of polymer flooding agents.展开更多
This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability...This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability oilfield by more than 10%. The practice shows that the liquid CO2 injection in low permeability reservoir is easier than water injection, and the reservoir generally has better CO2 storage.展开更多
To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil r...To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations.展开更多
Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling...Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.展开更多
Aiming at the problem of the loss of the ASP flooding near the injection wells, this paper gives a new idea to enhance oil recovery called "Technique of Targeted Delivery", which combines the radial horizont...Aiming at the problem of the loss of the ASP flooding near the injection wells, this paper gives a new idea to enhance oil recovery called "Technique of Targeted Delivery", which combines the radial horizontal well with ultra-short radius drilled by high pressure water jet with the ASP flooding, the horizontal wells work as the "Target channel" transport the ternary composite system to the remaining oil enrichment area directly, to avoid the loss of the ternary composite system near the injection wells. The plate homogeneous experiment and numerical simulation show that the technique can significantly improve the sweep efficiency and the effect of the oil displacement, and greatly improve the oil recovery rate. The optimal flooding parameters of the target transport technique are: the right angle target, the length of the channel is about 15% of the well distance and the injection volume of the ternary composite system is 0.4 PV. Under such conditions, this technique can enhance recovery by 48.87% and 22.04% respectively, compared with the water flooding and conventional ASP flooding. The target transport technique solves the problem of high loss of chemical agent in near-wellbore area during the ASP flooding, and compensates for the high cost of ASP flooding and the limitation of application, and has a broad application prospect.展开更多
Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield....Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation,viscosity and flow capacity,and it has larger molecular coil size,higher viscosity and viscosifying capacity,and poorer mobility.The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention,and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties.Surface-active polymer can change the chemical property of interface and reduce interfacial tension,making the reservoir rock turn water-wet,also it can emulsify the oil into relatively stable oil-in-water emulsion,and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension.The surface-active polymer flooding enlarges swept volume in two ways:Microscopically,the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil,and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery.Macroscopically,it has plugging capacity,and can emulsify and plug the dominant channels in layers with high permeability,forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance,and thus enlarging swept volume.展开更多
This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected f...This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected for use in field trials. Behaviors of bacteria activated in the reservoir, oil recovery and water cut, and the viscosity of crude oil produced through huff & puff testing and flooding with molasses-injection tests, have been investigated in situ. CJF-002, which produces biopolysaccharide, is the best among the microbes used for field trials, as it can use molasses as nutrient and produce a small quantity of CO2 and a mass of water-insoluble biopolymer. The metabolic behavior in the reservoir showed that CJF-002 had a good potentiality for MEOR.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reserv...Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.展开更多
Nowadays,because of the reduction in oil resources and the passage of the first and second life period of current reservoirs,using enhanced oil recovery(EOR)methods is of great importance.In recent years,due to the de...Nowadays,because of the reduction in oil resources and the passage of the first and second life period of current reservoirs,using enhanced oil recovery(EOR)methods is of great importance.In recent years,due to the developments in technology and the advent of powerful computers,using simulation methods in enhanced oil recovery processes is on the rise.The computational fluid dynamics(CFD)method,as a branch of fluid mechanics,is a suitable method for studying and simulating EOR methods.In this study,a review was done on the application of CFD studies for simulating EOR methods.Also,potentials for future studies and the challenges researchers may face in this method were mentioned.Although using this method in enhanced oil recovery processes has recently started,different areas for more studies still exist.To optimize the usage of this method in future studies,the necessity of multiphase models and solution methods development,as well as considering all microscopic parameters such as interfacial tension and viscosity in investigating oil recovery factor is of great importance.展开更多
The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid rat...The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid ratio (GLR) of 0.2:1 for the Zhuangxi heavy oil (325 mPa.s at 55 ℃) was performed on cores, sand packs and plate model. In sand pack tests, polymer enhanced foam flooding increased oil recovery by 39.8%, which was 11.4% higher than that for alkali/surfactant/polymer (ASP) flooding under the same conditions. Polymer enhanced foam flooding in plate models shows that the low GLR foam flooding increased oil recovery by about 30%, even when the extended water flooding was finished at 90% water cut. Moreover, it was discovered by microscopy that foam was more stable in heavy oil than in light oil. These results confirm that low GLR foam flooding is a promising technology for displacing conventional heavy oil.展开更多
基金The financial supports received from the National Natural Science Foundation of China(Nos.22178378,22127812)。
文摘CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.
文摘Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, the application of nanoparticles with low-salinity water flooding has shown remarkable results in enhanced oil recovery(EOR). Many studies have been performed on the effect of nanofluids on EOR mechanisms. Their results showed that nanofluids can improve oil recovery when used in low-salinity water flooding. In this work, the effects of injection of low-salinity water and low-salinity nanofluid(prepared by adding SiO_2 nanoparticles to low-salinity water) on oil recovery were investigated. At first, the effects of ions were investigated with equal concentrations in low-salinity water flooding. The experimental results showed that the monovalent ions had better performance than the divalent ions because of them having more negative zeta potential and less ionic strength. Also, low-salinity water flooding recovered 6.1% original oil in place(OOIP) more than the high-salinity flooding. Contact angle measurements demonstrated that low-salinity water could reduce the contact angle between oil and water. Then in the second stage, experiments were continued by adding SiO_2 nanoparticles to the K+ solution which had the highest oil recovery at the first stage. The experimental results illustrated that the addition of Si02 nanoparticles up to 0.05 wt% increased oil recovery by about 4% OOIP more than the low-salinity water flooding.
基金National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund(U19B6003-02-06)。
文摘To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity.
基金the National Iranian Oil Company and Tarbiat Modares University for their support throughout this study。
文摘Smart water flooding,as a popular method to change the wettability of carbonate rocks,is one of the interesting and challenging issues in reservoir engineering.In addition,the recent studies show that nanoparticles have a great potential for application in EOR processes.However,little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery.In this study,stability,contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO4^2- and Ca^2+ ions in the presence of nanofluid on EOR processes.The amine/organosiloxane@Al2O3/SiO2(AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here.However,for the first time the application of this nanocomposite along with smart water has been studied in this research.Results show that by increasing the concentrations of calcium and sulfate ions in smart water,oil recovery is improved by 9% and 10%,respectively,compared to seawater.In addition,the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery.Finally,the best performance was observed in smart water containing two times of sulfate ions concentration(SW2 S) with nanofluids,showing increased efficiency of about 7.5%.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
文摘Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.
基金the National Iranian South Oil Company (NISOC) for generously funding the project
文摘An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments.
基金supported by a Grant as part of the ‘‘Development of IOR/EOR technologies and field verification for carbonate reservoirs in UAE’’ project by the Korean Government Ministry of Trade,Industry and Energy (MOTIE).(No. 20152510101980)
文摘When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are present in formation water,they react chemically with SO;, and BaSO;is precipitated. These reactions can cause a serious impact on the efficiency of enhanced oil recovery(EOR). Therefore, the main purpose of this study was to identify EOR efficiency induced by lowsalinity waterflooding(LSWF) when Ba;is present in carbonate reservoirs. From the experimental results, it was confirmed that the permeability calculated by the measured pressure difference was improved because of rock dissolution predominating over in situ precipitation for the case of low Ba;concentrations. In the analysis of wettability alteration through the measurements of relative permeabilities before and after LSWF, the higher Ba;concentration case consumed more SO;in precipitating the BaSO;, resulting in weaker wettability alteration due to the reduction of sulfate activity.These phenomena ultimately influenced EOR efficiency, i.e., the oil recovery was greater for the lower Ba;concentration.
基金Supported by the National Major Special Project of Oil and Gas During the 13th Five-Year Plan Period(NO.2016ZX05058-003-010)General Program of National Natural Science Foundation of China(NO.51574086)Postdoctoral Innovative Talent Support Program of China(NO.BX20190065)。
文摘Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performances of ordinary polymer,glycerol,polymer in"sheet-net"structure and heterogeneous weak gel at the same viscosity and concentration,the relationship between the viscosity of polymer displacement agents and displacement performance was demonstrated,and the method of improving polymer flooding effect was worked out.The main mechanism of polymer flooding to increase oil recovery is the swept volume expansion of water injection due to polymer retention in porous media.The viscosity of polymer agents has no positive correlation with polymer flooding effect.Although polymer of"sheet-net"structure has strong capacity in increasing viscosity,it has poor compatibility with pore throat structure of reservoir rock,low injectivity and low shear resistance.Heterogeneous weak gel system has higher adsorption and capture capacity in porous media,which is easy to retain in porous media,and can effectively establish seepage resistance in high permeability layers(zones).Compared with polymer solutions with the same viscosity or concentration,it has stronger ability to expand swept volume.Long term injection of polymer flooding agents will inevitably lead to fluid entry profile reversal,and thus worsening of polymer flooding effect.Alternate injection of high retention and low or non-retention displacement agents can further improve the displacement effect of polymer flooding agents.
文摘This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability oilfield by more than 10%. The practice shows that the liquid CO2 injection in low permeability reservoir is easier than water injection, and the reservoir generally has better CO2 storage.
基金Supported by China National Science and Technology Major Project(2016ZX05025-003-010) and (2016ZX05010-005).
文摘To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations.
基金Financial support from the Natural Science Foundation of Sichuan Province(2022NSFSC0030)National Natural Science Foundation of China(U1762218)is gratefully acknowledged.
文摘Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.
基金Supported by the National Natural Science Foundation of China(51174216)China National Science and Technology Major Project(2011ZX05009-004)
文摘Aiming at the problem of the loss of the ASP flooding near the injection wells, this paper gives a new idea to enhance oil recovery called "Technique of Targeted Delivery", which combines the radial horizontal well with ultra-short radius drilled by high pressure water jet with the ASP flooding, the horizontal wells work as the "Target channel" transport the ternary composite system to the remaining oil enrichment area directly, to avoid the loss of the ternary composite system near the injection wells. The plate homogeneous experiment and numerical simulation show that the technique can significantly improve the sweep efficiency and the effect of the oil displacement, and greatly improve the oil recovery rate. The optimal flooding parameters of the target transport technique are: the right angle target, the length of the channel is about 15% of the well distance and the injection volume of the ternary composite system is 0.4 PV. Under such conditions, this technique can enhance recovery by 48.87% and 22.04% respectively, compared with the water flooding and conventional ASP flooding. The target transport technique solves the problem of high loss of chemical agent in near-wellbore area during the ASP flooding, and compensates for the high cost of ASP flooding and the limitation of application, and has a broad application prospect.
基金Supported by China National Science and Technology Major Project(2016ZX05010002-004 and 2016ZX05023005-001-003)China Postdoctoral Science Foundation(2019M651255)National Natural Science Foundation of China(51804078).
文摘Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation,viscosity and flow capacity,and it has larger molecular coil size,higher viscosity and viscosifying capacity,and poorer mobility.The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention,and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties.Surface-active polymer can change the chemical property of interface and reduce interfacial tension,making the reservoir rock turn water-wet,also it can emulsify the oil into relatively stable oil-in-water emulsion,and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension.The surface-active polymer flooding enlarges swept volume in two ways:Microscopically,the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil,and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery.Macroscopically,it has plugging capacity,and can emulsify and plug the dominant channels in layers with high permeability,forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance,and thus enlarging swept volume.
文摘This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected for use in field trials. Behaviors of bacteria activated in the reservoir, oil recovery and water cut, and the viscosity of crude oil produced through huff & puff testing and flooding with molasses-injection tests, have been investigated in situ. CJF-002, which produces biopolysaccharide, is the best among the microbes used for field trials, as it can use molasses as nutrient and produce a small quantity of CO2 and a mass of water-insoluble biopolymer. The metabolic behavior in the reservoir showed that CJF-002 had a good potentiality for MEOR.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
基金the financial support provided by Council for Scientific and Industrial Research [22(0649)/13/EMR-II], New Delhi, to the Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
文摘Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.
文摘Nowadays,because of the reduction in oil resources and the passage of the first and second life period of current reservoirs,using enhanced oil recovery(EOR)methods is of great importance.In recent years,due to the developments in technology and the advent of powerful computers,using simulation methods in enhanced oil recovery processes is on the rise.The computational fluid dynamics(CFD)method,as a branch of fluid mechanics,is a suitable method for studying and simulating EOR methods.In this study,a review was done on the application of CFD studies for simulating EOR methods.Also,potentials for future studies and the challenges researchers may face in this method were mentioned.Although using this method in enhanced oil recovery processes has recently started,different areas for more studies still exist.To optimize the usage of this method in future studies,the necessity of multiphase models and solution methods development,as well as considering all microscopic parameters such as interfacial tension and viscosity in investigating oil recovery factor is of great importance.
基金support from the Innovation Team Program and New Century Excellent Talents Awards Program,the Ministry of Education of ChinaFok Ying Tung Education Foundation
文摘The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid ratio (GLR) of 0.2:1 for the Zhuangxi heavy oil (325 mPa.s at 55 ℃) was performed on cores, sand packs and plate model. In sand pack tests, polymer enhanced foam flooding increased oil recovery by 39.8%, which was 11.4% higher than that for alkali/surfactant/polymer (ASP) flooding under the same conditions. Polymer enhanced foam flooding in plate models shows that the low GLR foam flooding increased oil recovery by about 30%, even when the extended water flooding was finished at 90% water cut. Moreover, it was discovered by microscopy that foam was more stable in heavy oil than in light oil. These results confirm that low GLR foam flooding is a promising technology for displacing conventional heavy oil.