It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation t...It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.展开更多
At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a pr...At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.展开更多
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer ...In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.展开更多
A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple...A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.展开更多
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut...In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.展开更多
This paper studies the vapor pressure of water and precipitation situation in Lu'an Ground Station in Dabie Mountain area from 1979 to 1998.And the atmospheric perceivable water in Dabie Mountain can be calculated...This paper studies the vapor pressure of water and precipitation situation in Lu'an Ground Station in Dabie Mountain area from 1979 to 1998.And the atmospheric perceivable water in Dabie Mountain can be calculated by virtue of the empirical formula for atmospheric perceivable water.Besides,by analyzing the data,the seasonal changes of perceivable water in Dabie Mountain and the efficiency of precipitation of each weather system is acquired.The results show that there is a great potential for precipitation enhancement in Dabie Mountain.This paper introduces the processes and operation forms of precipitation enhancement for impounding water in reservoirs in Dabie Mountain region.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.
文摘At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 40875079)
文摘In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.
基金supported by the project of the NSFC (Grants No. 40875079)
文摘A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.
基金The authors gratefully acknowledge the support of the Enhancement Strategy of Multi-Type Energy Integration of Active Distribution Network(YNKJXM20220113).
文摘In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.
基金Supported by China Meteorological Administration (Provincial Figure Operation System Based on the New Generation Radar)The Program of Experimental Investigation on the Development and Utilization of Aerial Cloud Resource in Anhui Province
文摘This paper studies the vapor pressure of water and precipitation situation in Lu'an Ground Station in Dabie Mountain area from 1979 to 1998.And the atmospheric perceivable water in Dabie Mountain can be calculated by virtue of the empirical formula for atmospheric perceivable water.Besides,by analyzing the data,the seasonal changes of perceivable water in Dabie Mountain and the efficiency of precipitation of each weather system is acquired.The results show that there is a great potential for precipitation enhancement in Dabie Mountain.This paper introduces the processes and operation forms of precipitation enhancement for impounding water in reservoirs in Dabie Mountain region.