Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with...Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).展开更多
Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, ...Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, and surface enhanced Raman scattering (SERS) phenomenon based sensors. This report highlights the fabrication of nanotriangle arrays via nanoimprinting to overcome difficulties in creating large-area SERS active substrates with uniform, reproducible Raman signals. Electron beam lithography of anisotropic nanostructures, formation of arrays of nanotriangles in silicon and the transfer of triangular shapes to polymethylmethacrylate (PMMA) sheets via nanoimprinting have not been reported elsewhere. The reuse of silicon masters offers potential for production of low cost SERS substrates. The SERS activity and reproducibility of nanotriangles are illustrated and a consistent average enhancement factor of up to -2.9 × 1011, which is the highest value reported for a patterned SERS substrate, is achieved.展开更多
Plasmon coupling is an essential strategy to realize strong local electromagnetic(EM)field which is crucial for high-performance plasmonic devices.In this work,multiple plasmon couplings are demonstrated in three-dime...Plasmon coupling is an essential strategy to realize strong local electromagnetic(EM)field which is crucial for high-performance plasmonic devices.In this work,multiple plasmon couplings are demonstrated in three-dimensional(3D)hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone(AgNC)arrays decorated with high-density gold nanoparticles(AuNPs)which are fabricated by a template-assisted physical vapor deposition process.Strong interparticle coupling,particle-film coupling,inter-cone coupling,and particle-cone coupling are revealed by numerical simulations in such composite nanostructures,which produce intense and high-density EM hot spots,boosting highly sensitive and reproducible surface enhanced Raman scattering(SERS)detection with an enhancement factor of-1.74×10^(8).Furthermore,a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range.These results offer new ideas to develop novel plasmonic devices,and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis.展开更多
Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low ...Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low surface area of conventional metal foams largely limits their performance in applications such as charge storage. Here, we present a convenient electrochemical method for addressing this problem using Cu foams as an example. High surface area Cu foams are fabricated in a one-pot one-step manner by repetitive electrodeposition and dealloying treatments. The obtained Cu foams exhibit greatly improved performance for different applications like surface enhanced Raman spectroscopy (SERS) substrates and 3-D bulk supercapacitor electrodes.展开更多
基金supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park (Project HZQBKCZYB-2020030)National Key R&D Program of China (Project 2017YFA0204403)+2 种基金the National Natural Science Foundation of China (Project 51590892)the Major Program of Changsha Science and Technology (Project kh2003023)the Innovation and Technology Commission of HKSAR through Hong Kong Branch of National Precious Metals Material Engineering Research Centre,and the City University of Hong Kong (Project 9667207)。
文摘Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).
文摘Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, and surface enhanced Raman scattering (SERS) phenomenon based sensors. This report highlights the fabrication of nanotriangle arrays via nanoimprinting to overcome difficulties in creating large-area SERS active substrates with uniform, reproducible Raman signals. Electron beam lithography of anisotropic nanostructures, formation of arrays of nanotriangles in silicon and the transfer of triangular shapes to polymethylmethacrylate (PMMA) sheets via nanoimprinting have not been reported elsewhere. The reuse of silicon masters offers potential for production of low cost SERS substrates. The SERS activity and reproducibility of nanotriangles are illustrated and a consistent average enhancement factor of up to -2.9 × 1011, which is the highest value reported for a patterned SERS substrate, is achieved.
基金supported by the National Natural Science Foundation of China(No.51871003).
文摘Plasmon coupling is an essential strategy to realize strong local electromagnetic(EM)field which is crucial for high-performance plasmonic devices.In this work,multiple plasmon couplings are demonstrated in three-dimensional(3D)hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone(AgNC)arrays decorated with high-density gold nanoparticles(AuNPs)which are fabricated by a template-assisted physical vapor deposition process.Strong interparticle coupling,particle-film coupling,inter-cone coupling,and particle-cone coupling are revealed by numerical simulations in such composite nanostructures,which produce intense and high-density EM hot spots,boosting highly sensitive and reproducible surface enhanced Raman scattering(SERS)detection with an enhancement factor of-1.74×10^(8).Furthermore,a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range.These results offer new ideas to develop novel plasmonic devices,and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis.
文摘Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low surface area of conventional metal foams largely limits their performance in applications such as charge storage. Here, we present a convenient electrochemical method for addressing this problem using Cu foams as an example. High surface area Cu foams are fabricated in a one-pot one-step manner by repetitive electrodeposition and dealloying treatments. The obtained Cu foams exhibit greatly improved performance for different applications like surface enhanced Raman spectroscopy (SERS) substrates and 3-D bulk supercapacitor electrodes.