Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method...Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).展开更多
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil...A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.展开更多
In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF...In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.展开更多
This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending En...This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending Enhanced Combination Algorithm (ECA) is proposed.The analysis of the generalized property and sample error shows that the ECA can heighten the study speed and reduce individual error.展开更多
In mausoleum murals, existing bubbles are one kind of the most harmful defects for the repair and protection of relics. For this reason, it is necessary to detect bubbles, especially the ones with small size. A method...In mausoleum murals, existing bubbles are one kind of the most harmful defects for the repair and protection of relics. For this reason, it is necessary to detect bubbles, especially the ones with small size. A method to detect the small bubbles with enhanced terahertz (THz) images is proposed. To simulate the bubbles in the mausoleum murals, circular grooves have been hidden in the plaster and then measured by the THz reflected time domain spectroscopy imaging system. To observe the small bubbles in murals, a comprehensive enhancement algorithm is adopted to process the obtained THz images. With the enhanced method, the circular grooves in the murals can be observed clearly, even for the circular groove with a diameter of 1.5 mm. The results indicate that the proposed comprehensive method can be used to detect the tiny defects of murals.展开更多
Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image ...Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function.展开更多
It is well known that the adaptive line enhancer (ALE) is effective detector of CW signal with unknown frequency in the background of white noise. The system processing gain of ALE, when the LMS algorithm is used, how...It is well known that the adaptive line enhancer (ALE) is effective detector of CW signal with unknown frequency in the background of white noise. The system processing gain of ALE, when the LMS algorithm is used, however, is not satisfactory because of the presence of iterative noise and weight noise. In this paper, the coherent accumulation algorithm of ALE, called as ALECA, is suggested. It is shown that the adaptive filter employing this new algorithm possesses the ARMA structure. The experimental results also show that the processing gain of ALECA is about 14dB higher than that of conventional ALE.展开更多
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
文摘Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).
文摘A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.
基金supported by the National Natural Science Foundation of China(82020108006 and 81730025 to Chen Zhao,U2001209 to Bo Yan)the Excellent Academic Leaders of Shanghai(18XD1401000 to Chen Zhao)the Natural Science Foundation of Shanghai,China(21ZR1406600 to Weimin Tan).
文摘In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.
基金the National Defense Research item "Data fusion" of Tenth Five-Year Plan 102010203
文摘This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending Enhanced Combination Algorithm (ECA) is proposed.The analysis of the generalized property and sample error shows that the ECA can heighten the study speed and reduce individual error.
基金supported by the 973 Program of China under Grant No.2013CBA01702National Natural Science Foundation of China under Grant No.11474206,No.91233202,No.11374216,and No.11404224+3 种基金Program for New Century Excellent Talents in University under Grant No.NCET-12-0607Scientific Research Project of Beijing Education Commission under Grant No.KM201310028005Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20121108120009the Beijing Youth Top-Notch Talent Training Plan under Grant No.CIT&TCD201504080
文摘In mausoleum murals, existing bubbles are one kind of the most harmful defects for the repair and protection of relics. For this reason, it is necessary to detect bubbles, especially the ones with small size. A method to detect the small bubbles with enhanced terahertz (THz) images is proposed. To simulate the bubbles in the mausoleum murals, circular grooves have been hidden in the plaster and then measured by the THz reflected time domain spectroscopy imaging system. To observe the small bubbles in murals, a comprehensive enhancement algorithm is adopted to process the obtained THz images. With the enhanced method, the circular grooves in the murals can be observed clearly, even for the circular groove with a diameter of 1.5 mm. The results indicate that the proposed comprehensive method can be used to detect the tiny defects of murals.
基金the National Natural Science Foundation of China(No.61976091)。
文摘Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function.
文摘It is well known that the adaptive line enhancer (ALE) is effective detector of CW signal with unknown frequency in the background of white noise. The system processing gain of ALE, when the LMS algorithm is used, however, is not satisfactory because of the presence of iterative noise and weight noise. In this paper, the coherent accumulation algorithm of ALE, called as ALECA, is suggested. It is shown that the adaptive filter employing this new algorithm possesses the ARMA structure. The experimental results also show that the processing gain of ALECA is about 14dB higher than that of conventional ALE.