The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this pap...The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.展开更多
This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a c...This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a control oriented nonlinear dynamic model with Naphtha cracking and thermal dynamics; 2) analysing a U-model(i.e., control oriented prototype) representation of various popular process model sets; 3)designing the new U-PPC to enhance the control performance in pole placement and stabilisation; 4) taking computational bench tests to demonstrate the control system design and performance with a user-friendly step by step procedure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12002031,12122202U22B2083)+1 种基金the China Postdoctoral Science Foundation(Nos.BX2021038 and 2021M700428)the National Key Research and Development of China(No.2022YFB4601901)。
文摘The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.
基金partially supported by the National Natural Science Foundation of China(61273188,61473312)Taishan Scholar Construction Engineering Special Funding of Shandong
文摘This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a control oriented nonlinear dynamic model with Naphtha cracking and thermal dynamics; 2) analysing a U-model(i.e., control oriented prototype) representation of various popular process model sets; 3)designing the new U-PPC to enhance the control performance in pole placement and stabilisation; 4) taking computational bench tests to demonstrate the control system design and performance with a user-friendly step by step procedure.