An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state...An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.展开更多
A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is impro...A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is improved by a method based on the Paris formula and the Foreman formula allowing the establishment of different degradation stages.The remaining useful life of rolling element bearings can be predicted by the adjusted model with inputs of physical data and operating status information.The late operating trend is predicted by the use of the particle filter algorithm.The rolling bearing full life experimental data validate the proposed method.Further,the prediction result is compared with the single SSM and the Gamma model,and the results indicate that the predicted accuracy of the proposed method is higher with better practicability.展开更多
Background:Many original studies have shown that traditional Chinese five-element therapy(FEM-therapy)can effectively relieve anxiety,depression and quality of life.However,one published systematic review refuted this...Background:Many original studies have shown that traditional Chinese five-element therapy(FEM-therapy)can effectively relieve anxiety,depression and quality of life.However,one published systematic review refuted this conclusion.To further clarify the efficacy of FEM therapy in relieving negative emotion among cancer patients and to assess the reliability of the evidence,this systematic review and meta-analysis was performed.Methods:We searched for randomized controlled trials(RCTs)comparing FEM-therapy versus standard care for cancer patients,six databases(CBM,PubMed,Cochrane Library,Web of Science,CNKI,and WanFang),two clinical trial registries and one gray literature database were searched from inception to October 31,2022.Two investigators independently screened literature,extracted data,and assessed risk of bias according to the Cochrane Handbook Version 6.1.0.The RevMan 5.3 software was used to perform the meta-analysis.Overall quality of evidence was rated using GRADE(Grading of Recommendations,Assessment,Development and Evaluation).Results:25 RCTs involving 1990 patients were finally included.Two of which had high risk bias,the remaining 23 were rated as unclear risk bias.Compared with other treatments,FEM-therapy combined with conventional nursing can significantly relieve anxiety(MD=-10.33,95%CI:[-13.77,-6.88],P<0.05;very low certainty)and depression(SMD=-1.10,95%CI:[-1.41,-0.79],P<0.05;very low certainty),and can significantly increase the quality of sleep(MD=-2.92,95%CI:[-4.89,-0.95],P<0.05;low certainty).Compared with acupuncture intervention,FEM-therapy combined with acupuncture can decreased the anxiety(SMD=-0.64,95%CI:[-0.98,-0.30],P<0.05;Moderate certainty)and depression(SMD=-0.68,95%CI:[-1.00,-0.32],P<0.05;Moderate certainty).Conclusion:Traditional Chinese FEM therapy combined with other treatments are effective in alleviating negative emotions among cancer patients.In order to better improve the quality of life of cancer patients and give more reliable advice,more trials of direct comparisons are needed to inform clinical decision-making with greater confidence.展开更多
In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the ou...In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the outer layer has no inlaid metal wires. Stress, strain and temperature field of DLRF were calculated with ANSYS finite element analysis (FEA) software, FL of DLRF RW was also computed with fracture mechanics fatigue theory. The results of computation indicate that the heat generated in RW's rubber flange (RF) can be reduced by the use of DLRF, and the FL of RW can be increased without affecting the mechanical intensity of RW.展开更多
The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolutio...The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolution equation for high cycle fatigue is presented according to the experimental data, in which factors such as the stress amplitude and mean stress are taken into account. Then, a method is proposed to obtain the material parameters of the revised equation from the present fatigue experimental data. Finally, with the utilization of the ANSYS parametric design language (APDL) on the ANSYS platform, the coupling effect between the fatigue damage of materials and the stress distribution in structures is taken into account, and the fatigue life of specimens is predicted. The outcome shows that the numerical prediction is in accord with the experimental results, indicating that the revised two-scale damage evolution model can be well applied for the high cycle fatigue life prediction under uniaxial loading.展开更多
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch...A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.展开更多
The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thi...The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thickness and shrink range on the stress-strain field were studied. Finally, based on the methodology and strategy of the fatigue analysis, fatigue life of backup roll was estimated by using the stress-strain data obtained through finite element simulation. The results show that roll sleeve thickness and shrink range have a great influence on sleeve stress distribution of built-up sleeved roll. Under the circumstance of ensuring transferring enough torque, the shrink range should be kept small. However, thicker roll sleeve has longer roll service life when the shrink range is constant.展开更多
The fatigue damage evolution equations and the relation of fatigue damage parameter with maximum cyclic stress of superalloy GH150 and its welded structures are established. The fatigue damage evolution equations in a...The fatigue damage evolution equations and the relation of fatigue damage parameter with maximum cyclic stress of superalloy GH150 and its welded structures are established. The fatigue damage evolution equations in a multiaxial stress state are also given. By use of cyclic thermal elastoplastic damage constitutive relations, the fatigue damage and lifetime predictions are carried out for the welded combustion chamber of aeroengine.展开更多
Ships usually operate in the vibrant and dynamic environment;a majority of crews work and have a rest in a stressful space and have daily job displacements that working in it and moving from port disrupt as soon as re...Ships usually operate in the vibrant and dynamic environment;a majority of crews work and have a rest in a stressful space and have daily job displacements that working in it and moving from port disrupt as soon as reaching to port. Such conditions which require living at work place for a long time raises a unique job life which causes increase in risks of human mistakes. Huge marine accidents occur per year in country in which human element plays a major role. Identification and analysis of the components affect individuals as the staffs in ships, so that such component raises the conditions due to inattention which result in rise of severe and more severe marine accidents. Evaluation of each component has been taken into account in the present research. The present research seeks to examine and identity factors affecting human elements in marine accidents.展开更多
This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analys...This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.展开更多
The present article is a review study on the types of rare earth elements(REEs),environmental and biological effects as well as the sources of emission of these elements as pollution in nature.The purpose of this stud...The present article is a review study on the types of rare earth elements(REEs),environmental and biological effects as well as the sources of emission of these elements as pollution in nature.The purpose of this study is to provide a vision in environmental planning and control of pollution caused by REEs.The evaluation of rare earth elements was studied in human life and its environmental and biological effects,which have particular importance and are entering the life cycle through industrial and mining pollution sources.Since mining activities intensify the dispersion of these elements in the environment and the existence of industrial factories located around urban drainage system plays a unique role in creating and spreading pollution caused by rare earth elements;As a result,two case studies were conducted on two mining and industrial areas.The first case is the Choghart mine in Yazd province as an example of mining pollution,and the second case study is performed on the Kor river as an example of industrial pollution which is caused by industrial activities around it,Then the results are well explained to show both two environments of litho and hydro.Due to this fact that produced environmental pollution can cause exchange pollutant compounds with the surrounding environment besides its long-lasting destructive effects;It can cause irreversible biological effects on living organisms.By targeting this evaluation,several techniques can be proposed to prevent the entry and dispersal of rare earth elements from pollution sources besides methods to reduce the damage of these elements to the ecosystem.展开更多
The paper calculated the temperature and stress fields of 1000 MW ultra-supercritical steam turbine rotors which start in cold condition using the finite element calculation program (ANSYS). After getting rotor stress...The paper calculated the temperature and stress fields of 1000 MW ultra-supercritical steam turbine rotors which start in cold condition using the finite element calculation program (ANSYS). After getting rotor stress field, the paper use the general slope method to estimate the low cycle fatigue life loss, the rest of the conditions can be calculated in this method.展开更多
Failure analysis and fatigue life prediction are very important in the design procedure to assure the safety and reliability of rubber components. The fatigue life of a railway elastomeric pad is predicted by combinin...Failure analysis and fatigue life prediction are very important in the design procedure to assure the safety and reliability of rubber components. The fatigue life of a railway elastomeric pad is predicted by combining the test of material properties and finite element analysis (FEA). The specially developed chloroprene rubber material’s fatigue life equation is acquired based on uniaxial tensile test and fatigue life tests performed on the dumbbell specimens of the chloroprene rubber. The same chloroprene rubber was developed at Indian Rubber Manufacturer’s Research Association, Thane. The strain distribution contours and the maximum total principal strains of the elastomeric pad at different compressive loads are obtained using finite element analysis method. The software used for the FEA was ANSYS. The three parameter nonlinear hyperelastic Mooney-Rivlin Model and plane 182 elements were used for finite element analysis. The critical region cracks prone to arise are obtained and analysed. Then the maximum first principal elastic strain was used as the fatigue damage parameter, which is substituted in the chloroprene rubber’s fatigue life equation, to predict the fatigue life of an elastomeric pad in the number of cycles at different compressive loads. The results were compared with the technical requirements given by Indian Railway’s Research Designs and Standards Organization. These requirements were achieved up to certain extents. The results were also compared with the data available in the literature and a similarity was observed between the results acquired and literature data. In short, the proposed fatigue life prediction method can shorten the product design cycle, decrease the design and product cost remarkably and improve the quality of an elastomeric pad.展开更多
The majority of vehicle structural failures originate from joint areas.Cyclic loading is one of the primary factors in joint failures,making the fatigue performance of joints a critical consideration in vehicle struct...The majority of vehicle structural failures originate from joint areas.Cyclic loading is one of the primary factors in joint failures,making the fatigue performance of joints a critical consideration in vehicle structure design.The use of traditional fatigue analysis methods is constrained by the absence of adhesive life data and the wide variety of joint geometries.Therefore,there is a pressing need for an accurate fatigue life estimation method for the joints in the automotive industry.In this work,we proposed a data-driven approach embedding physical knowledge-guided parameters based on experimental data and finite element analysis(FEA)results.Different machine learning(ML)algorithms are adopted to investigate the fatigue life of three typical adhesive joints,namely lap shear,coach peel and KSII joints.After the feature engineering and tuned process of the ML models,the preferable model using the Gaussian process regression algorithm is established,fed with eight input parameters,namely thicknesses of the substrates,line forces and bending moments of the adhesive bonded joints obtained from FEA.The proposed method is validated with the test data set and part-level physical tests with complex loading states for an unbiased evaluation.It demonstrates that for life prediction of adhesive joints,the data-driven solutions can constitute an improvement over conventional solutions.展开更多
A fatigue damage model is developed for evaluating accumulative fatigue damage of dumpers. The loading spectrums acted on dumpers are created according to measured strain data in field. The finite element analysis is ...A fatigue damage model is developed for evaluating accumulative fatigue damage of dumpers. The loading spectrums acted on dumpers are created according to measured strain data in field. The finite element analysis is carried out for assessing stress distribution and strength characteristics of dumpers. Fatigue damage indexes and service life are calculated by a modified Palmgren-Miner rule. The investigation shows that fatigue notch factor has a significant influence on the calculation of fatigue damage of dumpers.展开更多
The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plas...The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25mm×0.35mm, the stand-off of 0.02mm and the solder volume of 0.026mm^3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5mm pitch QFP.展开更多
Objectives: To evaluate the effects of the Chinese medicine (CM) five-element music on quality of life for senior and non-senior advanced cancer patients. Methods: With a randomized controlled trial, 170 advanced ...Objectives: To evaluate the effects of the Chinese medicine (CM) five-element music on quality of life for senior and non-senior advanced cancer patients. Methods: With a randomized controlled trial, 170 advanced cancer patients were randomly assigned to three groups: the CM five-element music group (68 patients), the Western music therapy group (68 cases), and the no music therapy group (34 cases). All patients of 70 years old or older were considered seniors and the remaining patients younger than 70 years were considered non- seniors. Patients in the CM five-element music group listened to CM five-element music, the patients in the Western music group listened to Western music, and the patients in the no music group did not listen to music. A course of treatment was 3 weeks, with 30 rain each day, 5 days a week. The Hospice Quality of Life Index- Revised (HQOLI-R) and Karnofsky performance score (KPS) were measured in the three groups before and after treatment. The symptom diary score was measured in the three groups every 3 days, 7 times in total. Results: CM five-element music group showed a significant difference of HQOLI-R, KPS and symptom diary score with other groups (all P〈0.01). There were significant differences of HQOLI-R, symptom diary score, and KPS after treatment in CM five-element music group and other groups in the non-senior subgroup (P〈0.05). Additionally, there were significant differences in HQOLI-R and KPS after treatment among the three groups in the senior subgroup (P〈0.05). Conclusions: CM five-element music therapy could improve the quality of life and KPS for senior and non senior advanced cancer patients, and it could improve subjective symptoms for non-senior advanced cancer patients.展开更多
An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with ...An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with reference to the experimental results of fatigue tests on standard specimens. With the utilization of APDL language on the ANSYS platform, a finite element implementation is presented to perform coupling operation on damage evolution of mate- rial and stress redistribution. The fatigue lives of some notched specimens and a Pitch-change-link are predicted by using the above approach. The calculated results are validated with experimental data.展开更多
Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such...Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such as floating production storage and offloading (FPSO) or semi-submersibles. In this work, the time-domain fatigue analysis of SLWR was adopted for better representing the structural nonlinearity, fluid load nonlinearity and riser-soil nonlinear interaction. The Palmgren-Miner rule was employed for the fatigue life prediction along the riser length. The main purpose of this analysis is to present sensitivity analyses of SLWR fatigue life under various input parameters, which include the structural damping, the hydrodynamic coefficients along the riser, the seabed stiffness, the vessel motions, etc. The analyses indicated the strong dependence of the riser fatigue life on these parameters. The results can help designers to understand the dynamic behavior of the SLWR and provide guidance for selection of some critical parameters that are used in the fatigue design.展开更多
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Ass...In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms.展开更多
基金The National Natural Science Foundation of China(No.71671035,72001039)the Open Fund of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201901)the Open Fund of Jiangsu Wind Power Engineering Technology Center(No.ZK19-03-03)。
文摘An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.
文摘A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is improved by a method based on the Paris formula and the Foreman formula allowing the establishment of different degradation stages.The remaining useful life of rolling element bearings can be predicted by the adjusted model with inputs of physical data and operating status information.The late operating trend is predicted by the use of the particle filter algorithm.The rolling bearing full life experimental data validate the proposed method.Further,the prediction result is compared with the single SSM and the Gamma model,and the results indicate that the predicted accuracy of the proposed method is higher with better practicability.
基金supported by Shanghai Key Laboratory of Health Identification and Assessment(Grant No.21DZ2271000).
文摘Background:Many original studies have shown that traditional Chinese five-element therapy(FEM-therapy)can effectively relieve anxiety,depression and quality of life.However,one published systematic review refuted this conclusion.To further clarify the efficacy of FEM therapy in relieving negative emotion among cancer patients and to assess the reliability of the evidence,this systematic review and meta-analysis was performed.Methods:We searched for randomized controlled trials(RCTs)comparing FEM-therapy versus standard care for cancer patients,six databases(CBM,PubMed,Cochrane Library,Web of Science,CNKI,and WanFang),two clinical trial registries and one gray literature database were searched from inception to October 31,2022.Two investigators independently screened literature,extracted data,and assessed risk of bias according to the Cochrane Handbook Version 6.1.0.The RevMan 5.3 software was used to perform the meta-analysis.Overall quality of evidence was rated using GRADE(Grading of Recommendations,Assessment,Development and Evaluation).Results:25 RCTs involving 1990 patients were finally included.Two of which had high risk bias,the remaining 23 were rated as unclear risk bias.Compared with other treatments,FEM-therapy combined with conventional nursing can significantly relieve anxiety(MD=-10.33,95%CI:[-13.77,-6.88],P<0.05;very low certainty)and depression(SMD=-1.10,95%CI:[-1.41,-0.79],P<0.05;very low certainty),and can significantly increase the quality of sleep(MD=-2.92,95%CI:[-4.89,-0.95],P<0.05;low certainty).Compared with acupuncture intervention,FEM-therapy combined with acupuncture can decreased the anxiety(SMD=-0.64,95%CI:[-0.98,-0.30],P<0.05;Moderate certainty)and depression(SMD=-0.68,95%CI:[-1.00,-0.32],P<0.05;Moderate certainty).Conclusion:Traditional Chinese FEM therapy combined with other treatments are effective in alleviating negative emotions among cancer patients.In order to better improve the quality of life of cancer patients and give more reliable advice,more trials of direct comparisons are needed to inform clinical decision-making with greater confidence.
文摘In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the outer layer has no inlaid metal wires. Stress, strain and temperature field of DLRF were calculated with ANSYS finite element analysis (FEA) software, FL of DLRF RW was also computed with fracture mechanics fatigue theory. The results of computation indicate that the heat generated in RW's rubber flange (RF) can be reduced by the use of DLRF, and the FL of RW can be increased without affecting the mechanical intensity of RW.
文摘The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolution equation for high cycle fatigue is presented according to the experimental data, in which factors such as the stress amplitude and mean stress are taken into account. Then, a method is proposed to obtain the material parameters of the revised equation from the present fatigue experimental data. Finally, with the utilization of the ANSYS parametric design language (APDL) on the ANSYS platform, the coupling effect between the fatigue damage of materials and the stress distribution in structures is taken into account, and the fatigue life of specimens is predicted. The outcome shows that the numerical prediction is in accord with the experimental results, indicating that the revised two-scale damage evolution model can be well applied for the high cycle fatigue life prediction under uniaxial loading.
基金supported by the National Natural Science Foundation of China(No.11002010)
文摘A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.
基金Project(E2010001155) supported by the Natural Science Foundation of Hebei Province, China
文摘The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thickness and shrink range on the stress-strain field were studied. Finally, based on the methodology and strategy of the fatigue analysis, fatigue life of backup roll was estimated by using the stress-strain data obtained through finite element simulation. The results show that roll sleeve thickness and shrink range have a great influence on sleeve stress distribution of built-up sleeved roll. Under the circumstance of ensuring transferring enough torque, the shrink range should be kept small. However, thicker roll sleeve has longer roll service life when the shrink range is constant.
文摘The fatigue damage evolution equations and the relation of fatigue damage parameter with maximum cyclic stress of superalloy GH150 and its welded structures are established. The fatigue damage evolution equations in a multiaxial stress state are also given. By use of cyclic thermal elastoplastic damage constitutive relations, the fatigue damage and lifetime predictions are carried out for the welded combustion chamber of aeroengine.
文摘Ships usually operate in the vibrant and dynamic environment;a majority of crews work and have a rest in a stressful space and have daily job displacements that working in it and moving from port disrupt as soon as reaching to port. Such conditions which require living at work place for a long time raises a unique job life which causes increase in risks of human mistakes. Huge marine accidents occur per year in country in which human element plays a major role. Identification and analysis of the components affect individuals as the staffs in ships, so that such component raises the conditions due to inattention which result in rise of severe and more severe marine accidents. Evaluation of each component has been taken into account in the present research. The present research seeks to examine and identity factors affecting human elements in marine accidents.
文摘This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.
文摘The present article is a review study on the types of rare earth elements(REEs),environmental and biological effects as well as the sources of emission of these elements as pollution in nature.The purpose of this study is to provide a vision in environmental planning and control of pollution caused by REEs.The evaluation of rare earth elements was studied in human life and its environmental and biological effects,which have particular importance and are entering the life cycle through industrial and mining pollution sources.Since mining activities intensify the dispersion of these elements in the environment and the existence of industrial factories located around urban drainage system plays a unique role in creating and spreading pollution caused by rare earth elements;As a result,two case studies were conducted on two mining and industrial areas.The first case is the Choghart mine in Yazd province as an example of mining pollution,and the second case study is performed on the Kor river as an example of industrial pollution which is caused by industrial activities around it,Then the results are well explained to show both two environments of litho and hydro.Due to this fact that produced environmental pollution can cause exchange pollutant compounds with the surrounding environment besides its long-lasting destructive effects;It can cause irreversible biological effects on living organisms.By targeting this evaluation,several techniques can be proposed to prevent the entry and dispersal of rare earth elements from pollution sources besides methods to reduce the damage of these elements to the ecosystem.
文摘The paper calculated the temperature and stress fields of 1000 MW ultra-supercritical steam turbine rotors which start in cold condition using the finite element calculation program (ANSYS). After getting rotor stress field, the paper use the general slope method to estimate the low cycle fatigue life loss, the rest of the conditions can be calculated in this method.
文摘Failure analysis and fatigue life prediction are very important in the design procedure to assure the safety and reliability of rubber components. The fatigue life of a railway elastomeric pad is predicted by combining the test of material properties and finite element analysis (FEA). The specially developed chloroprene rubber material’s fatigue life equation is acquired based on uniaxial tensile test and fatigue life tests performed on the dumbbell specimens of the chloroprene rubber. The same chloroprene rubber was developed at Indian Rubber Manufacturer’s Research Association, Thane. The strain distribution contours and the maximum total principal strains of the elastomeric pad at different compressive loads are obtained using finite element analysis method. The software used for the FEA was ANSYS. The three parameter nonlinear hyperelastic Mooney-Rivlin Model and plane 182 elements were used for finite element analysis. The critical region cracks prone to arise are obtained and analysed. Then the maximum first principal elastic strain was used as the fatigue damage parameter, which is substituted in the chloroprene rubber’s fatigue life equation, to predict the fatigue life of an elastomeric pad in the number of cycles at different compressive loads. The results were compared with the technical requirements given by Indian Railway’s Research Designs and Standards Organization. These requirements were achieved up to certain extents. The results were also compared with the data available in the literature and a similarity was observed between the results acquired and literature data. In short, the proposed fatigue life prediction method can shorten the product design cycle, decrease the design and product cost remarkably and improve the quality of an elastomeric pad.
基金funded by the Construction Project of the National Natural Science Foundation(Grant No.52205377)National Key Research and Development Program(Grant No.2022YFB4601804)Key Basic Research Project of Suzhou(Grant Nos.#SJC2022029,#SJC2022031).
文摘The majority of vehicle structural failures originate from joint areas.Cyclic loading is one of the primary factors in joint failures,making the fatigue performance of joints a critical consideration in vehicle structure design.The use of traditional fatigue analysis methods is constrained by the absence of adhesive life data and the wide variety of joint geometries.Therefore,there is a pressing need for an accurate fatigue life estimation method for the joints in the automotive industry.In this work,we proposed a data-driven approach embedding physical knowledge-guided parameters based on experimental data and finite element analysis(FEA)results.Different machine learning(ML)algorithms are adopted to investigate the fatigue life of three typical adhesive joints,namely lap shear,coach peel and KSII joints.After the feature engineering and tuned process of the ML models,the preferable model using the Gaussian process regression algorithm is established,fed with eight input parameters,namely thicknesses of the substrates,line forces and bending moments of the adhesive bonded joints obtained from FEA.The proposed method is validated with the test data set and part-level physical tests with complex loading states for an unbiased evaluation.It demonstrates that for life prediction of adhesive joints,the data-driven solutions can constitute an improvement over conventional solutions.
文摘A fatigue damage model is developed for evaluating accumulative fatigue damage of dumpers. The loading spectrums acted on dumpers are created according to measured strain data in field. The finite element analysis is carried out for assessing stress distribution and strength characteristics of dumpers. Fatigue damage indexes and service life are calculated by a modified Palmgren-Miner rule. The investigation shows that fatigue notch factor has a significant influence on the calculation of fatigue damage of dumpers.
基金Project(02336060) supported by the Natural Science Foundation of Guangxi Province , China
文摘The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25mm×0.35mm, the stand-off of 0.02mm and the solder volume of 0.026mm^3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5mm pitch QFP.
基金Supported by the project of Chinese Geriatric Oncology Society of the"Eleventh five-year"Plan of Ministry of Civil Affairs(No.2008-47-2-45)
文摘Objectives: To evaluate the effects of the Chinese medicine (CM) five-element music on quality of life for senior and non-senior advanced cancer patients. Methods: With a randomized controlled trial, 170 advanced cancer patients were randomly assigned to three groups: the CM five-element music group (68 patients), the Western music therapy group (68 cases), and the no music therapy group (34 cases). All patients of 70 years old or older were considered seniors and the remaining patients younger than 70 years were considered non- seniors. Patients in the CM five-element music group listened to CM five-element music, the patients in the Western music group listened to Western music, and the patients in the no music group did not listen to music. A course of treatment was 3 weeks, with 30 rain each day, 5 days a week. The Hospice Quality of Life Index- Revised (HQOLI-R) and Karnofsky performance score (KPS) were measured in the three groups before and after treatment. The symptom diary score was measured in the three groups every 3 days, 7 times in total. Results: CM five-element music group showed a significant difference of HQOLI-R, KPS and symptom diary score with other groups (all P〈0.01). There were significant differences of HQOLI-R, symptom diary score, and KPS after treatment in CM five-element music group and other groups in the non-senior subgroup (P〈0.05). Additionally, there were significant differences in HQOLI-R and KPS after treatment among the three groups in the senior subgroup (P〈0.05). Conclusions: CM five-element music therapy could improve the quality of life and KPS for senior and non senior advanced cancer patients, and it could improve subjective symptoms for non-senior advanced cancer patients.
基金supported by the National Natural Science Foundation of China(No.11002010)
文摘An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with reference to the experimental results of fatigue tests on standard specimens. With the utilization of APDL language on the ANSYS platform, a finite element implementation is presented to perform coupling operation on damage evolution of mate- rial and stress redistribution. The fatigue lives of some notched specimens and a Pitch-change-link are predicted by using the above approach. The calculated results are validated with experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004, 51009093)the Research Fund for the Shandong Province Key Laboratory of Ocean Engineering
文摘Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such as floating production storage and offloading (FPSO) or semi-submersibles. In this work, the time-domain fatigue analysis of SLWR was adopted for better representing the structural nonlinearity, fluid load nonlinearity and riser-soil nonlinear interaction. The Palmgren-Miner rule was employed for the fatigue life prediction along the riser length. The main purpose of this analysis is to present sensitivity analyses of SLWR fatigue life under various input parameters, which include the structural damping, the hydrodynamic coefficients along the riser, the seabed stiffness, the vessel motions, etc. The analyses indicated the strong dependence of the riser fatigue life on these parameters. The results can help designers to understand the dynamic behavior of the SLWR and provide guidance for selection of some critical parameters that are used in the fatigue design.
基金the supports from the Jiangsu Province Key Laboratory of Aerospace Power System of China(No.NJ20140019)the National Natural Science Foundation of China(No.51205190)
文摘In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms.