期刊文献+
共找到420篇文章
< 1 2 21 >
每页显示 20 50 100
Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model
1
作者 Lina Wang Yu Cao +2 位作者 Xilin Deng Huitao Liu Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期54-66,共13页
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev... As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions. 展开更多
关键词 significant wave height wave forecasting ensemble empirical mode decomposition(eemd) Seq-to-Seq long short-term memory
下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
2
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
下载PDF
基于PE-CEEMD-SVD的Φ-OTDR信号降噪方法
3
作者 姚国珍 李炳峰 谷元宇 《半导体光电》 CAS 北大核心 2024年第4期662-668,共7页
为实现相位敏感光时域反射仪中相位信号的精确测量,提出了一种基于排列熵算法的互补集合经验模态分解联合奇异值分解的新型降噪方法(PE-CEEMD-SVD)。首先,对含有噪声的相位信号进行CEEMD分解,得到一系列频率不同的IMF分量;然后,将PE算... 为实现相位敏感光时域反射仪中相位信号的精确测量,提出了一种基于排列熵算法的互补集合经验模态分解联合奇异值分解的新型降噪方法(PE-CEEMD-SVD)。首先,对含有噪声的相位信号进行CEEMD分解,得到一系列频率不同的IMF分量;然后,将PE算法和相关系数机制相结合,保留较大相关的有用分量,对较小相关的噪声分量使用SVD算法进行二次降噪;最后将两次降噪后保留下来的有用分量进行重构。仿真和实验结果表明,相较于EMD、EEMD和CEEMD降噪方法,该方法可获得更高信噪比的信号,有利于相位信号的精确测量。 展开更多
关键词 相位敏感光时域反射仪 排列熵 互补集合经验模态分解 奇异值分解 信噪比
下载PDF
基于EEMD分解的阶次跟踪方法研究
4
作者 魏仕华 蔺梦雄 《机电工程》 CAS 北大核心 2024年第9期1604-1612,共9页
摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行... 摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行了故障诊断。首先,对采集到的时域振动信号和转速信号进行了等角度域差值采样,得到了振动信号的等角域平稳信号;然后,对等角域信号进行了集合经验模态分解,得到了若干个固有模态分量(IMFs),计算了各个固有模态分量的峭度值,选取目标模态分量进行了信号重构;接着,采用快速傅里叶变换得到了故障信号的阶次图;最后,根据减速器的传动方式、各零部件的模数,计算出了各主要部件的故障阶次,对比减速器在故障前后阶次图的能量峰值进行了故障诊断。研究结果表明:该方法能够准确提取包含故障信息的固有模态分量,实现从等时域信号到等角域信号的转换,并提取摆线针轮减速器的滚针故障阶次(8.37阶),故障准确率达到99.6%,可实现摆线针轮减速器在非平稳工况下的故障特征识别,并验证该方法的可行性和有效性。 展开更多
关键词 摆线针轮减速器 集合经验模态分解 阶次跟踪分析 故障诊断 变转速工况 固有模态分量
下载PDF
基于PCA和EEMD的柔性直流配电网故障选线算法
5
作者 胡亚辉 韦延方 +2 位作者 王鹏 王晓卫 曾志辉 《电源学报》 CSCD 北大核心 2024年第2期305-315,共11页
柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主... 柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主成分分析PCA(principal component analysis)和相关系数各自的优势。首先,提取暂态电流样本信号,采用EEMD得到以正交基函数表示的数据矩阵;接着,基于PCA进行该矩阵元素特征向量到主成分的转换,将样本信号投影到主元空间实现坐标变换,从而得到对样本数据的聚类和识别结果;最后,基于相关系数进行故障线路判别。本文算法的EEMD揭露了原始历史数据的内在变化规律,PCA能够有效选择故障有效特征。大量实验表明,该新算法准确有效,与现有其他方法相比,在故障信息不明显、不同过渡电阻方面具有优势。 展开更多
关键词 柔性直流配电网 集合经验模态分解 主成分分析 故障选线 相关系数
下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
6
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(eemd) Complete eemd with adaptive noise(CeemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
下载PDF
EEMD-小波在高边坡变形信息提取中的应用研究
7
作者 梁永平 李盛 赖国泉 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期993-1000,共8页
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进... 针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。 展开更多
关键词 公共安全 变形 集合经验模态分解(eemd)-小波 模态分量 模型重构 精度 信息提取
下载PDF
联合加权小波和EEMD的GNSS坐标时间序列降噪分析 被引量:1
8
作者 魏冠军 张沛 王立阳 《全球定位系统》 CSCD 2024年第2期9-15,共7页
针对GNSS坐标时间序列中有用信号与噪声难以准确分离这一问题,本文提出加权小波Z变换(weighted wavelet Z-transform,WWZ)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)的降噪方法.通过对西北地区70个陆态网络连续... 针对GNSS坐标时间序列中有用信号与噪声难以准确分离这一问题,本文提出加权小波Z变换(weighted wavelet Z-transform,WWZ)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)的降噪方法.通过对西北地区70个陆态网络连续站垂向坐标时间序列的降噪处理,分别采用均方根误差(root mean squared error,RMSE)、信噪比(signal to noise ratio,SNR)、闪烁噪声(flicker noise,FN)振幅及速度不确定度为评价指标,验证了本文方法的降噪效果在一定程度上优于小波降噪和EEMD降噪.结果显示:WWZ-EEMD相比小波降噪和EEMD降噪,降噪后信号序列RMSE分别降低了0.331 mm、0.757 mm,SNR分别提高了1.911 dB、3.635 dB;FN振幅及速度不确定度均有明显改善,验证了本文降噪方法的有效性. 展开更多
关键词 GNSS坐标时间序列 降噪 小波 集合经验模态分解(eemd) 速度不确定度
下载PDF
基于EEMD-NGO-LSTM神经网络耦合的月径流预测模型及应用 被引量:1
9
作者 张冲 王千凤 +2 位作者 齐新虎 王思宇 陈末 《水力发电》 CAS 2024年第1期1-7,共7页
为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游... 为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游的控制总站——王奔水文站2012年~2021年逐月径流过程,并与鲸鱼算法(WOA)以及灰狼算法(GWO)优化的长短期记忆神经网络进行模型比较。结果表明,EEMD-NGO-LSTM耦合预测模型的超参数迭代速度最快,精度最高,预测结果最接近实测值,其决定系数R^(2)为0.8643。而后采用CMIP6气候模式(SSP126情景)下的2030年的降水、气温数据输入模型进行预测,在气温上升1℃,降水不变的情景下,年径流量将增加6.61%;在降水升高5%,气温不变的情景下,年径流量将增加6.95%;在气温上升1℃、降水升高5%的情境下,年径流量将增加22.16%。 展开更多
关键词 月径流预测 集成经验模态分解 北方苍鹰优化算法 长短期记忆神经网络 耦合模型 预测精度
下载PDF
基于双EEMD与重构的局部放电时延估计方法
10
作者 李明洁 陈东伟 +2 位作者 王通 刘金超 刘卫东 《电波科学学报》 CSCD 北大核心 2024年第4期760-768,共9页
对室内电气设备的局部放电检测与定位是保障设备长期稳定运行的有效手段,而时延估计精度是影响局部放电检测与定位准确度的重要因素。为解决局部放电信号在噪声及多径效应影响下的时延估计精度问题,本文提出了一种基于双集合经验模态分... 对室内电气设备的局部放电检测与定位是保障设备长期稳定运行的有效手段,而时延估计精度是影响局部放电检测与定位准确度的重要因素。为解决局部放电信号在噪声及多径效应影响下的时延估计精度问题,本文提出了一种基于双集合经验模态分解(ensemble empirical mode decomposition,EEMD)与重构的局部放电信号预处理方法。模拟仿真与实验测试结果表明,本文所提出的方法与广义互相关算法相比有效提高了时延估计准确度,且稳定性与鲁棒性更好。本文所提方法有效提高了局部放电信号的信噪比(signal-to-noise ratio,SNR)以及时延估计算法的精度,可用于低SNR及多径效应明显的室内环境中局部放电信号的时延精确估计。 展开更多
关键词 局部放电 广义加权互相关 二次相关 集合经验模态分解(eemd) 低信噪比(SNR) 多径效应
下载PDF
基于EEMD-DRL的铁矿石期货交易策略研究
11
作者 刘仕强 潘威旭 丁佩佩 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第4期611-618,共8页
随着铁矿石等大宗商品日益金融化,越来越多的投资者参与到铁矿石期货交易中,交易策略成为投资决策中的重点研究问题。针对复杂和动态的铁矿石交易环境,设计一种基于集合经验模态分解(EEMD)与深度强化学习(DRL)方法的铁矿石期货交易策略... 随着铁矿石等大宗商品日益金融化,越来越多的投资者参与到铁矿石期货交易中,交易策略成为投资决策中的重点研究问题。针对复杂和动态的铁矿石交易环境,设计一种基于集合经验模态分解(EEMD)与深度强化学习(DRL)方法的铁矿石期货交易策略。首先,采用EEMD方法深入剖析铁矿石期货价格的特征,综合考虑分解后的特征,构建基于马尔可夫决策过程的铁矿石期货交易环境;其次,采用多种DRL方法产生铁矿石期货交易策略,并利用累计收益率优化DRL产生的交易策略;最后,采用夏普比率筛选出各交易周期内的最优策略,形成全交易周期的最优策略组合。实验结果表明:提出的交易策略在确保收益率最大化的基础上具有较强的稳健性。 展开更多
关键词 铁矿石期货 深度强化学习 马尔可夫决策过程 交易策略 集合经验模式分解
下载PDF
基于EEMD-WOA-SVM的土石坝渗流量预测
12
作者 杨石勇 傅蜀燕 +2 位作者 赵定柱 高兰兰 欧斌 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第5期7-12,共6页
为准确预报土石坝渗流量的变化趋势,针对传统的时间序列模型存在非线性处理能力较差、捕捉序列依赖关系能力不足等问题,建立了基于EEMD-WOA-SVM的土石坝渗流量预测模型.该模型采用集合经验模态(EEMD)有效分解土石坝渗流时间序列,引入鲸... 为准确预报土石坝渗流量的变化趋势,针对传统的时间序列模型存在非线性处理能力较差、捕捉序列依赖关系能力不足等问题,建立了基于EEMD-WOA-SVM的土石坝渗流量预测模型.该模型采用集合经验模态(EEMD)有效分解土石坝渗流时间序列,引入鲸鱼优化算法(WOA)寻找支持向量机模型(SVM)的最优超参数组合,再将各模态分解分量代入组合模型预测并重构预测结果.案例分析结果表明,所建EEMD-WOA-SVM模型与传统的SVM模型相比,其拟合优度R2提升了19.8%,均方误差EMS、均方根误差ERMS、平均绝对误差EMA和平均绝对百分比误差EMAP分别降低了76%、50.3%、45.2%和43.2%.另外,与GA-SVM和WOA-SVM模型相比,R2值达0.9486,EMS、ERMS、EMA和EMAP分别降低至0.0012、0.0352、0.0289和0.0176,进一步说明了该组合模型具有较高的预测精度,为土石坝渗流量的精确预测提供了新途径. 展开更多
关键词 集合经验模态分解 鲸鱼优化算法 支持向量机 土石坝 渗流量预测
下载PDF
基于EEMD和CNN-SVM的滚动轴承故障诊断
13
作者 朱俊杰 张清华 +1 位作者 朱冠华 苏乃权 《机床与液压》 北大核心 2024年第17期229-234,共6页
针对滚动轴承振动信号易受外界噪声干扰、传统的故障诊断方法难以提取故障特征以及准确率低等问题,提出一种基于集合经验模态分解(EEMD)和卷积神经网络结合支持向量机(CNN-SVM)的滚动轴承故障诊断方法。利用EEMD算法对原始振动信号进行... 针对滚动轴承振动信号易受外界噪声干扰、传统的故障诊断方法难以提取故障特征以及准确率低等问题,提出一种基于集合经验模态分解(EEMD)和卷积神经网络结合支持向量机(CNN-SVM)的滚动轴承故障诊断方法。利用EEMD算法对原始振动信号进行分解得到本征模态函数(IMF)分量,再由相关系数筛选最佳分量进行信号重构,得到降噪后的振动信号。将重构降噪后的振动信号转换为二维特征图输入卷积神经网络进行训练提取特征。最后将提取到的稀疏代表特征向量输入到支持向量机进行故障分类。实验结果表明:所提方法能有效降低噪声干扰,便于提取故障特征,与传统的故障诊断方法相比准确率更高,诊断速度更快。 展开更多
关键词 滚动轴承 集合经验模态分解 卷积神经网络 故障诊断
下载PDF
基于EEMD和小波阈值的局部放电去噪方法
14
作者 杨琪 赵芝希 +3 位作者 林国武 凌志 陈丽丹 曹宏悦 《环境技术》 2024年第7期98-104,共7页
局部放电是开关柜运行状态的重要表征。而现场采集得到的局部放电往往被周期窄带和高斯白噪声所掩盖,为了能准确对局部放电进行分析,保证开关柜安全性和可靠性,提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD... 局部放电是开关柜运行状态的重要表征。而现场采集得到的局部放电往往被周期窄带和高斯白噪声所掩盖,为了能准确对局部放电进行分析,保证开关柜安全性和可靠性,提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和小波阈值的去噪方法。首先对含噪局部放电进行EEMD分解,使用相关系数对模态分量(Intrinsic Mode Functions,IMFs)进行阈值判断,以去除虚假分量,随后对保留的IMFs进行小波阈值处理,最后将IMFs重构即可得到有用的局部放电信号。测试结果证明,该方法不仅可以有效地去除噪声信号,还能较好地保留局部放电的特征。 展开更多
关键词 局部放电 集合经验模态分解 小波阈值去噪 相关系数
下载PDF
基于Zoom-FFT-CEEMD和小波包降噪的风电机组齿轮箱故障特征提取和诊断
15
作者 孟井煜枫 杨禄铭 +3 位作者 张铖 吴博阳 徐国平 俞健 《微特电机》 2024年第4期28-32,37,共6页
基于信号处理的风电机组齿轮箱故障诊断是风力发电领域中的重要研究方向。针对风电机组齿轮箱故障特征提取问题,提出了一种基于Zoom-FFT-CEEMD和小波包降噪的方法。通过对在风电机组齿轮箱振动测点所采集到各个测点的振动加速度信号做RM... 基于信号处理的风电机组齿轮箱故障诊断是风力发电领域中的重要研究方向。针对风电机组齿轮箱故障特征提取问题,提出了一种基于Zoom-FFT-CEEMD和小波包降噪的方法。通过对在风电机组齿轮箱振动测点所采集到各个测点的振动加速度信号做RMS趋势分析,找出RMS趋势明显上升的测点和时间段。利用小波包降噪技术对该测点的振动信号进行降噪处理,互补集合经验模态分解(CEEMD)得到的分量对振动信号进行多尺度分析,再使用Zoom算法对齿轮箱振动信号进行局部放大,以突出故障信号。利用快速傅里叶变换(FFT)对放大后的信号进行频谱分析,以提高故障特征的提取准确性。实验结果表明,与传统频谱分析法相比,该方法能够有效地提取风电机组齿轮箱的故障特征,具有较高的准确性和稳定性,为风电机组齿轮箱的早期故障诊断提供了一种有效的方法。 展开更多
关键词 齿轮箱 互补集合经验模态分解 细化快速傅里叶变换 小波包 特征提取 故障诊断
下载PDF
基于CEEMD-LSTM光伏短期功率预测
16
作者 梁亚峰 马立红 +3 位作者 邱剑洪 冯在顺 何雷震 刘承锡 《科学技术与工程》 北大核心 2024年第13期5396-5405,共10页
为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)... 为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)相结合的光伏短期功率预测模型。首先,充分考虑影响光伏出力的太阳辐照度、相对湿度、大气压力和空气温度4种环境因素,通过CEEMD将气象因素特征曲线分解为多模态特征数据,准确捕捉其不同的时间尺度和频率特征,进而充分保留环境数据的不平稳特征。其次,在此基础上,利用LSTM网络对多模态特征数据进行时间序列建模,旨在保留时间序列的季节性和不平稳特征,为后续建模提供更准确的输入特征。最后,通过对分解后的信号开展训练,根据输入数据的变化自适应调整预测模型参数,迭代生成特定场景下的预测模型,从而灵活应对实时环境变化,得到相应功率预测结果。在海南一孤立海岛分布式光伏电站37 kW子阵的8个月气象和功率数据集进行验证,实验结果表明,所提方法在保留环境数据细节和局部特性上具有显著优势,在不同气象条件均具有良好的自适应性,有效提高了光伏短期功率预测精度。 展开更多
关键词 光伏发电 完全经验模态分解 长短期记忆神经网络 光伏短期功率预测 不平稳特征 多模态特征数据
下载PDF
基于EEMD-SVM的光伏阵列直流电弧故障检测
17
作者 吴杰 《电动工具》 2024年第3期13-17,19,共6页
光伏阵列随着运行时间的增长,阵列内数量众多的连接线缆、连接头容易产生破损或连接失效等问题,引发直流电弧故障,严重影响系统的安全运行,因此需要采用合适的检测方法进行故障诊断,以及时发现电弧故障。直流电弧故障的检测方法大致可... 光伏阵列随着运行时间的增长,阵列内数量众多的连接线缆、连接头容易产生破损或连接失效等问题,引发直流电弧故障,严重影响系统的安全运行,因此需要采用合适的检测方法进行故障诊断,以及时发现电弧故障。直流电弧故障的检测方法大致可以分为基于物理特性和时频特性两类。前者成本高,难度大,不适合大型光伏系统;后者随着近几年人工智能技术的兴起,大多数是提取直流电弧故障的时频域特征值形成数据集,运用神经网络或智能算法对其进行识别、训练、归纳等,达到检测目的,目前实际应用的检测方法侧重于后者。选用基于时频域特性的集合经验模态分解和支持向量机结合方法进行检测,在MATLAB/Simulink仿真平台搭建光伏阵列模型和直流电弧故障仿真模型,模拟光伏阵列不同位置的串、并联电弧故障,对电流信号进行采集、分析与处理。实验结果表明,支持向量机模型能够较好地对光伏阵列直流电弧故障进行识别和检测,有效区分光伏阵列正常工作状态与故障工作状态。 展开更多
关键词 直流 电弧 故障检测 时频域特性 集合经验模态分解 支持向量机 仿真模型
下载PDF
基于EEMD-LSTM-ARIMA的土石坝渗压预测模型研究 被引量:2
18
作者 岑威钧 王肖鑫 蒋明欢 《水资源与水工程学报》 CSCD 北大核心 2023年第2期180-185,共6页
渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合... 渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合经验模态分解(EEMD)对时间序列特征进行提取,根据长短期记忆神经网络(LSTM)对提取出的特征分量进行预测,同时结合差分自回归移动平均方法(ARIMA)进行残差修正,组合LSTM和ARIMA的预测结果,重构得到改进预测模型。以某深厚覆盖层上的土石坝工程为例,选取主河床坝体防渗墙后2个典型测点的实测渗压值序列为研究对象进行应用验证。结果表明:相较于单一的LSTM模型和ARIMA模型,改进模型的平均绝对误差MAE、均方误差MSE、均方根误差RMSE均为3种模型中的最小值,预测精度明显优于另外2种模型,该模型为土石坝渗压的精确预测分析提供了新途径。 展开更多
关键词 土石坝 渗压预测 集合经验模态分解 长短期记忆神经网络 差分自回归移动平均
下载PDF
改进CEEMD-SVM的轴承故障识别方法及其应用 被引量:1
19
作者 谢素超 李雅鑫 谭鸿创 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第8期3192-3202,共11页
由于现场条件限制,用于列车轴承故障诊断的故障数据样本量较少且多为不平衡数据集,为了及时准确地识别轴承故障,提出一种基于互补经验模态分解-支持向量机(Complementary ensemble empirical modal decomposition-support vector machin... 由于现场条件限制,用于列车轴承故障诊断的故障数据样本量较少且多为不平衡数据集,为了及时准确地识别轴承故障,提出一种基于互补经验模态分解-支持向量机(Complementary ensemble empirical modal decomposition-support vector machine,CEEMD-SVM)的故障识别方法并将其用于轴承不平衡数据集识别。采用CCEMD分解信号,得到不同频率的本征模态函数(Intrinsic mode function,IMF),对IMF分量进行相关性筛选处理后再重构,实现降噪处理。计算降噪后信号的时频域特征值以及能量,选取贡献度较大的特征值作为特征向量构成训练集和测试集,输入改进后的支持向量机分类器及AFSA-SVM分类器中进行学习和测试,分别在2个数据集中构造了小样本平衡和不平衡数据组进行了3组实验,用于测试该方法的鲁棒性和泛化性能。研究结果表明:在只含有单种类型故障时,CEEMD-AFSA-SVM的识别准确率能够达到100%。当有复合故障时,识别准确率达到99.8%,且在训练样本仅占10%时也能达到99%以上的识别精度,识别精度超过了深度学习网络。对不平衡样本集的平均识别精度达到99.3%,优于其他模型。研究成果为列车轴承故障识别提供一种简单有效的方法,可应用于列车故障智能诊断。 展开更多
关键词 滚动轴承 故障诊断 互补集合经验模态分解 不平衡数据集 支持向量机
下载PDF
基于EEMD-CNN-GRU的短期风向预测 被引量:1
20
作者 史加荣 缑璠 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第5期568-573,共6页
为了提高短期风向的预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元网络(Gated Recurrent Unit,GRU)的混合模型:EEMD-CNN-GRU.... 为了提高短期风向的预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元网络(Gated Recurrent Unit,GRU)的混合模型:EEMD-CNN-GRU.针对风向序列的随机性和不平稳性等特点,先利用EEMD将数据分解成多个分量;再运用CNN的局部连接和权值共享来提取分量中的潜在特征;最后,使用GRU对CNN所提取的潜在特征进一步构建特征,叠加各分量的预测值,得到最终预测结果.实验结果表明:相对于BP神经网络和长短期记忆网络(Long Short-Term Memory,LSTM)等其他模型,本文所提出的预测方法取得了良好的性能. 展开更多
关键词 风向预测 集合经验模态分解 卷积神经网络 门控循环单元网络 长短期记忆网络
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部