期刊文献+
共找到1,702篇文章
< 1 2 86 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(eemd) Complete eemd with adaptive noise(CeemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
下载PDF
Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method 被引量:3
2
作者 Hong PAN Min-sheng BU 《Water Science and Engineering》 EI CAS CSCD 2014年第2期227-235,共9页
Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial... Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals. 展开更多
关键词 pressure fluctuation ensemble empirical mode decomposition intrinsic modefunction correlation coefficient
下载PDF
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
3
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales runoff
下载PDF
A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 被引量:1
4
作者 符懋敬 庄建军 +3 位作者 侯凤贞 展庆波 邵毅 宁新宝 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期592-601,共10页
In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th... In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. 展开更多
关键词 ensemble empirical mode decomposition gait series peak detection intrinsic mode functions
下载PDF
Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model 被引量:1
5
作者 Lina Wang Yu Cao +2 位作者 Xilin Deng Huitao Liu Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期54-66,共13页
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev... As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions. 展开更多
关键词 significant wave height wave forecasting ensemble empirical mode decomposition(eemd) Seq-to-Seq long short-term memory
下载PDF
Effective forecast of Northeast Pacific sea surface temperature based on a complementary ensemble empirical mode decomposition–support vector machine method 被引量:1
6
作者 LI Qi-Jie ZHAO Ying +1 位作者 LIAO Hong-Lin LI Jia-Kang 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第3期261-267,共7页
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST... The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments. 展开更多
关键词 Sea surface temperature complementary ensemble empirical mode decomposition support vector machine PREDICTION
下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
7
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
8
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
基于EEMD与CNN-BiLSTM的噪声环境下滚动轴承故障诊断方法
9
作者 李军星 徐行 +1 位作者 贾现召 邱明 《轴承》 北大核心 2025年第2期85-92,共8页
针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD... 针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD将噪声环境下的振动信号分解为一系列固有模态函数,降低噪声的影响;在CNN部分的第1层使用大卷积核与多分支结构获得不同的感受野,在每一个分支中随机丢弃一些数据增强模型的抗干扰能力,从而提取到更具泛化能力的多样化特征信息,后续部分使用残差结构,以免网络较深时发生梯度消失的现象,解决深层次网络退化问题;在BiLSTM部分使用2个并行的分支结构,用于增强模型对时序信息的利用,从而提高模型在不同工况和噪声环境下的准确率。使用凯斯西储大学轴承数据集和西安交通大学轴承数据集对所提方法进行验证,并与其他深度学习方法和传统机器学习方法进行对比,结果表明本文方法在多种工况和噪声环境下均取得了优异的故障诊断性能。 展开更多
关键词 滚动轴承 故障诊断 集成经验模态分解 卷积神经网络 双向长短时记忆神经网络
下载PDF
基于EEMD和GP的混合直流系统双端保护方案研究
10
作者 武传健 梁正堂 +2 位作者 黄强 张晓东 张大海 《智慧电力》 北大核心 2025年第1期98-106,共9页
为了提高混合直流输电系统保护可靠性,提出一种基于EEMD和GP算法的双端保护方案。首先,分析控制策略、拓扑结构、分布电容因素影响下混合直流输电系统故障特征,挖掘暂态电流频域相似性特征;其次,引入并融合EEMD算法和GP算法,利用组合算... 为了提高混合直流输电系统保护可靠性,提出一种基于EEMD和GP算法的双端保护方案。首先,分析控制策略、拓扑结构、分布电容因素影响下混合直流输电系统故障特征,挖掘暂态电流频域相似性特征;其次,引入并融合EEMD算法和GP算法,利用组合算法表达混合直流系统暂态电流的频域相似性特征,以两侧暂态电流关联维数的差异性建立保护判据;最后,搭建模型并验证基于关联维数的双端保护方案的正确性、可靠性和优越性。结果表明,所提方案可在较强干扰下可靠识别故障区域。 展开更多
关键词 混合直流系统 集合经验模态分解 GP算法 双端保护
下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
11
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CeemdAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
下载PDF
样本熵改进EEMD算法在继电器参数异常值处理中的应用
12
作者 彭威 孙鑫亮 李文华 《电力机车与城轨车辆》 2025年第1期47-54,共8页
针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型。首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法... 针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型。首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法得到有效的模态分量;最后,分别采用拉依达准则及三次样条插值法对各模态异常数据进行识别及替换,将处理后的所有分量进行重构异常值,得到处理后的数据序列。继电器接触压降参数的实例分析结果表明,该模型具有良好的泛化能力,且能够有效地识别出潜在异常值。 展开更多
关键词 集合经验模态分解(eemd) 样本熵 模态混叠 三次样条插值 继电器参数
下载PDF
Detection of time varying pitch in tonal languages: an approach based on ensemble empirical mode decomposition 被引量:5
13
作者 Hong HONG Xiao-hua ZHU +2 位作者 Wei-min SU Run-tong GENG Xin-long WANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第2期139-145,共7页
A method based on ensemble empirical mode decomposition (EEMD) is proposed for accurately detecting the time varying pitch of speech in tonal languages. Unlike frame-, event-, or subspace-based pitch detectors, the ti... A method based on ensemble empirical mode decomposition (EEMD) is proposed for accurately detecting the time varying pitch of speech in tonal languages. Unlike frame-, event-, or subspace-based pitch detectors, the time varying information of pitch within the short duration, which is of crucial importance in speech processing of tonal languages, can be accurately extracted. The Chinese Linguistic Data Consortium (CLDC) database for Mandarin Chinese was employed as standard speech data for the evaluation of the effectiveness of the method. It is shown that the proposed method provides more accurate and reliable results, particularly in estimating the tones of non-monotonically varying pitches like the third one in Mandarin Chinese. Also, it is shown that the new method has strong resistance to noise disturbance. 展开更多
关键词 ensemble empirical mode decomposition Time varying pitch Tonal language Noise restraint
原文传递
De-noising of radiation pressure signal generated by bubble oscillation based on ensemble empirical mode decomposition 被引量:1
14
作者 Xiang-hao Zheng Yu-ning Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第5期849-863,共15页
The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex back... The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex background noises.In order to accurately extract the effective components of the radiation pressure signal generated by the bubble oscillation,this paper proposes a de-noising procedure for the radiation pressure signal,based on the ensemble empirical mode decomposition(EEMD),the autocorrelation function and the modified wavelet soft-threshold de-noising method.In order to verify the effectiveness of the procedure,the typical radiation pressure signal generated based on the Keller-Miksis model under the acoustic excitation is employed for the subsequent de-noising analysis.The results of the qualitative analysis show that the amplitude and the period of the bubble oscillation can be clearly observed in the time-domain diagram of the de-noised signal based on the EEMD.In the quantitative analysis,the de-noised signal based on the EEMD has better performance with higher signal-to-noise ratio(SNR),smaller root-mean-square error,and larger correlation coefficient than that based on the wavelet transform(WT)and the empirical mode decomposition(EMD).Furthermore,with the increase of the complexity of the radiation pressure signal(e.g.,the increase of the dimensionless pressure amplitude of the acoustic wave and the decrease of the SNR of the input signal),the above three evaluation indexes of the de-noised signal based on the EEMD are all better than those based on the other two methods.When the signal is more complex,the de-noising capabilities of the WT,the EMD are greatly reduced,but the EEMD can still maintain the good de-noising capability,which shows the superiority of the signal de-noising procedure proposed in the present paper. 展开更多
关键词 Radiation pressure cavitation bubble oscillation signal de-noising ensemble empirical mode decomposition(eemd) autocorrelation function wavelet soft-threshold de-noising
原文传递
Regional features of topographic relief over the Loess Plateau,China:evidence from ensemble empirical mode decomposition 被引量:1
15
作者 Yongjuan Liu Jianjun Cao +2 位作者 Liping Wang Xuan Fang Wolfgang Wagner 《Frontiers of Earth Science》 SCIE CAS CSCD 2020年第4期695-710,共16页
Landforms with similar surface matter compositions,endogenic and exogenic forces,and development histories tend to exhibit significant degrees of self-similarity in morphology and spatial variation.In loess hill-gully... Landforms with similar surface matter compositions,endogenic and exogenic forces,and development histories tend to exhibit significant degrees of self-similarity in morphology and spatial variation.In loess hill-gully areas,ridges and hills have similar topographic relief characteristics and present nearly periodic variations of similar repeating structures at certain spatial scales,which is termed the topographic relief period(TRP).This is a relatively new concept,which is different from the degree of relief,and describes the fluctuations of the terrain from both horizontal and vertical(cross-section)perspectives,which can be used for in-depth analysis of 2-D topographic relief features.This technique provides a new perspective for understanding the macro characteristics and differentiation patterns of loess landforms.We investigate TRP variation features of different landforms on the Loess Plateau,China,by extracting catchment boundary profiles(CBPs)from 5 m resolution digital elevation model(DEM)data.These profiles were subjected to temporal-frequency analysis using the ensemble empirical mode decomposition(EEMD)method.The results showed that loess landforms are characterized by significant regional topographic relief;the CBP of 14 sample areas exhibited an overall pattern of decreasing TRPs and increasing topographic relief spatial frequencies from south to north.According to the TRPs and topographic relief characteristics,the topographic relief of the Loess Plateau was divided into four types that have obvious regional differences.The findings of this study enrich the theories and methods for digital terrain data analysis of the Loess Plateau.Future study should undertake a more in-depth investigation regarding the complexity of the region and to address the limitations of the EEMD method. 展开更多
关键词 catchment boundary profile topographic relief period ensemble empirical mode decomposition Loess Plateau
原文传递
A hybrid approach based on complete ensemble empirical mode decomposition with adaptive noise for multi-step-ahead solar radiation forecasting 被引量:1
16
作者 Khaled Ferkous Tayeb Boulmaiz +1 位作者 Fahd Abdelmouiz Ziari Belgacem Bekkar 《Clean Energy》 EI 2022年第5期705-715,共11页
Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stati... Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system. 展开更多
关键词 hybrid models complete ensemble empirical mode decomposition with adaptive noise Gaussian process regression prediction solar measurements Ghardaia site
原文传递
The Modified Ensemble Empirical Mode Decomposition Method and Extraction of Oceanic Internal Wave from Synthetic Aperture Radar Image
17
作者 王静涛 许晓革 孟祥花 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期243-250,共8页
In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mo... In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mode functions(IMFs), are discussed in this method. The signal-to-noise ratio(SNR) is used to measure the amplitude of added noise and the winning number of IMFs(which results most frequency) is used to unify the number of IMFs. By this method, the calculation speed of decomposition is improved, and the relative error between original data and sum of decompositions is reduced. In addition, the feasibility and effectiveness of this method are proved by the example of the oceanic internal solitary wave. 展开更多
关键词 winning ensemble empirical mode decomposition(W-eemd) signal-to-noise ratio(SNR) winning number intrinsic mode functions OCEANIC
原文传递
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:2
18
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 长短期记忆网络 门控循环单元
下载PDF
EEMD与LSTM在轴承剩余寿命预测中的应用 被引量:1
19
作者 张丹 袁林 +1 位作者 隋文涛 金亚军 《机械设计与制造》 北大核心 2024年第3期357-360,共4页
剩余使用寿命(RUL)预测是实现装备健康管理与预测性维护的最主要技术手段之一,为了准确预测轴承的剩余使用寿命,提出了一种基于集合经验模态分解(EEMD)和长短时记忆网络(LSTM)的轴承剩余寿命预测方法。首先,对采集到的振动信号做时域、... 剩余使用寿命(RUL)预测是实现装备健康管理与预测性维护的最主要技术手段之一,为了准确预测轴承的剩余使用寿命,提出了一种基于集合经验模态分解(EEMD)和长短时记忆网络(LSTM)的轴承剩余寿命预测方法。首先,对采集到的振动信号做时域、频域及时频分析,同时记录相应特征;进而,筛选特征,通过EEMD对振动信号予以分解并重构;最后,通过LSTM结合经过处理的信号构建健康特征指标。通过实验证明了该方法能有效的预测出轴承的剩余寿命,且有较高的预测精度。 展开更多
关键词 集合经验模态分解 长短时记忆网络 特征提取 寿命预测
下载PDF
CEEMD-FastICA-CWT联合瞬态响应阶次的电驱总成噪声源识别 被引量:1
20
作者 张威 景国玺 +2 位作者 武一民 杨征睿 高辉 《中国测试》 CAS 北大核心 2024年第4期144-152,共9页
以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastI... 以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastICA)方法提取纯电模式稳态工况下单一通道噪声信号特征,利用复Morlet小波变换及FFT对各分量信号时频特性进行识别。其次,采用阶次分析法和声能叠加法对稳态分量信号对应的各瞬态响应阶次能量进行对比分析,并结合皮尔逊积矩相关系数(Pearson product moment correlation coefficient,PPMCC)相似性识别确定不同噪声激励源贡献度。结果表明:减速齿副啮合噪声对该增程式电驱总成纯电模式运行噪声整体贡献度最大。 展开更多
关键词 电驱动总成 噪声源识别 互补集合经验模态分解 快速独立分量分析 连续小波变换 阶次分析
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部