针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检...针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。展开更多
为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现...为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果.展开更多
This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than usin...This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than using traditional machine learning(ML)algorithms or hybrid signal processing techniques,a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms.In the proposed method,the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization(PSO)weights.For this purpose,power system failures are simulated by using the PSCA D-Python co-simulation.One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information.Therefore,the proposed technique will be able to work on different systems,topologies,or data collections.The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect.展开更多
文摘针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。
文摘为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果.
文摘This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than using traditional machine learning(ML)algorithms or hybrid signal processing techniques,a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms.In the proposed method,the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization(PSO)weights.For this purpose,power system failures are simulated by using the PSCA D-Python co-simulation.One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information.Therefore,the proposed technique will be able to work on different systems,topologies,or data collections.The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect.