期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Effective Configuration of Ensemble Size and Horizontal Resolution for the NCEP GEFS 被引量:6
1
作者 麻巨慧 Yuejian ZHU +1 位作者 Richard WOBUS Panxing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期782-794,共13页
Two important questions are addressed in this paper using the Global Ensemble Forecast System (GEFS) from the National Centers for Environmental Prediction (NCEP): (1) How many ensemble members are needed to be... Two important questions are addressed in this paper using the Global Ensemble Forecast System (GEFS) from the National Centers for Environmental Prediction (NCEP): (1) How many ensemble members are needed to better represent forecast uncertainties with limited computational resources? (2) What is tile relative impact on forecast skill of increasing model resolution and ensemble size? Two-month experiments at T126L28 resolution were used to test the impact of varying the ensemble size from 5 to 80 members at the 500- hPa geopotential height. Results indicate that increasing the ensemble size leads to significant improvements in the performance for all forecast ranges when measured by probabilistic metrics, but these improvements are not significant beyond 20 members for long forecast ranges when measured by deterministic metrics. An ensemble of 20 to 30 members is the most effective configuration of ensemble sizes by quantifying the tradeoff between ensemble performance and the cost of computational resources. Two representative configurations of the GEFS the T126L28 model with 70 members and the T190L28 model with 20 members, which have equivalent computing costs--were compared. Results confirm that, for the NCEP GEFS, increasing the model resolution is more (less) beneficial than increasing the ensemble size for a short (long) forecast range. 展开更多
关键词 NCEP operational GEFS ensemble size horizontal resolution ensemble mean tbrecast probabilistic forecast
下载PDF
Effect of Doubling the Ensemble Size on the Performance of Ensemble Prediction in the Warm Season Using MOGREPS Implemented at the KMA
2
作者 Jun Kyung KAY Hyun Mee KIM +1 位作者 Young-Youn PARK Joohyung SON 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1287-1302,共16页
Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of ensemble p... Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of ensemble prediction in the warm season was evaluated. Because a finite ensemble size causes sampling error in the full forecast probability distribution function (PDF), ensemble size is closely related to the efficiency of the ensemble prediction system. Prediction capability according to doubling the ensemble size was evaluated by increasing the number of ensembles from 24 to 48 in MOGREPS implemented at the KMA. The initial analysis perturbations generated by the Ensemble Transform Kalman Filter (ETKF) were integrated for 10 days from 22 May to 23 June 2009. Several statistical verification scores were used to measure the accuracy, reliability, and resolution of ensemble probabilistic forecasts for 24 and 48 ensemble member forecasts. Even though the results were not significant, the accuracy of ensemble prediction improved slightly as ensemble size increased, especially for longer forecast times in the Northern Hemisphere. While increasing the number of ensemble members resulted in a slight improvement in resolution as forecast time increased, inconsistent results were obtained for the scores assessing the reliability of ensemble prediction. The overall performance of ensemble prediction in terms of accuracy, resolution, and reliability increased slightly with ensemble size, especially for longer forecast times. 展开更多
关键词 ensemble prediction ensemble size ensemble transform Kalman filter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部