On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a co...On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a convective-permitting ensemble forecast system(CEFS),at 4-km grid spacing,covering the entire mainland of China,is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event,the predicted maximum is 415 mm d^-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing,as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas,the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower(higher) Brier score and a higher resolution than the global ensemble for precipitation,indicating more reliable probabilistic forecasting by CEFS. Additionally,forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation,and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions,and,to less of an extent,the model physics.展开更多
Based on the B08RDP(Beijing 2008 Olympic Games Mesoscale Ensemble Prediction Research and Development Project) that was launched by the World Weather Research Programme(WWRP) in 2004,a regional ensemble prediction...Based on the B08RDP(Beijing 2008 Olympic Games Mesoscale Ensemble Prediction Research and Development Project) that was launched by the World Weather Research Programme(WWRP) in 2004,a regional ensemble prediction system(REPS) at a 15-km horizontal resolution was developed at the National Meteorological Center(NMC) of the China Meteorological Administration(CMA).Supplementing to the forecasters' subjective affirmation on the promising performance of the REPS during the 2008 Beijing Olympic Games(BOG),this paper focuses on the objective verification of the REPS for precipitation forecasts during the BOG period.By use of a set of advanced probabilistic verification scores,the value of the REPS compared to the quasi-operational global ensemble prediction system(GEPS) is assessed for a 36-day period(21 July-24 August 2008).The evaluation here involves different aspects of the REPS and GEPS,including their general forecast skills,specific attributes(reliability and resolution),and related economic values.The results indicate that the REPS generally performs significantly better for the short-range precipitation forecasts than the GEPS,and for light to heavy rainfall events,the REPS provides more skillful forecasts for accumulated 6-and 24-h precipitation.By further identifying the performance of the REPS through the attribute-focused measures,it is found that the advantages of the REPS over the GEPS come from better reliability(smaller biases and better dispersion) and increased resolution.Also,evaluation of a decision-making score reveals that a much larger group of users benefits from using the REPS forecasts than using the single model(the control run) forecasts,especially for the heavy rainfall events.展开更多
基金supported by the National Fundamental Research (973) Program of China (Grant No. 2013CB430103)the Special Foundation of the China Meteorological Administration (Grant No. GYHY201506006)supported by the National Science Foundation of China (Grant No. 41405100)
文摘On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a convective-permitting ensemble forecast system(CEFS),at 4-km grid spacing,covering the entire mainland of China,is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event,the predicted maximum is 415 mm d^-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing,as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas,the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower(higher) Brier score and a higher resolution than the global ensemble for precipitation,indicating more reliable probabilistic forecasting by CEFS. Additionally,forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation,and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions,and,to less of an extent,the model physics.
基金Supported by the Scientific Fund for Chinese Returnees of the Ministry of Human Resources and Social Security of Chinathe Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration (GYHY201006015)
文摘Based on the B08RDP(Beijing 2008 Olympic Games Mesoscale Ensemble Prediction Research and Development Project) that was launched by the World Weather Research Programme(WWRP) in 2004,a regional ensemble prediction system(REPS) at a 15-km horizontal resolution was developed at the National Meteorological Center(NMC) of the China Meteorological Administration(CMA).Supplementing to the forecasters' subjective affirmation on the promising performance of the REPS during the 2008 Beijing Olympic Games(BOG),this paper focuses on the objective verification of the REPS for precipitation forecasts during the BOG period.By use of a set of advanced probabilistic verification scores,the value of the REPS compared to the quasi-operational global ensemble prediction system(GEPS) is assessed for a 36-day period(21 July-24 August 2008).The evaluation here involves different aspects of the REPS and GEPS,including their general forecast skills,specific attributes(reliability and resolution),and related economic values.The results indicate that the REPS generally performs significantly better for the short-range precipitation forecasts than the GEPS,and for light to heavy rainfall events,the REPS provides more skillful forecasts for accumulated 6-and 24-h precipitation.By further identifying the performance of the REPS through the attribute-focused measures,it is found that the advantages of the REPS over the GEPS come from better reliability(smaller biases and better dispersion) and increased resolution.Also,evaluation of a decision-making score reveals that a much larger group of users benefits from using the REPS forecasts than using the single model(the control run) forecasts,especially for the heavy rainfall events.