期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ensemble Voting-Based Anomaly Detection for a Smart Grid Communication Infrastructure 被引量:1
1
作者 Hend Alshede Laila Nassef +1 位作者 Nahed Alowidi Etimad Fadel 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3257-3278,共22页
Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data ... Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data collected supports the real-time decision-making required for diverse applications.The communication infrastructure relies on different network types,including the Internet.This makes the infrastructure vulnerable to various attacks,which could compromise security or have devastating effects.However,traditional machine learning solutions cannot adapt to the increasing complexity and diversity of attacks.The objective of this paper is to develop an Anomaly Detection System(ADS)based on deep learning using the CIC-IDS2017 dataset.However,this dataset is highly imbalanced;thus,a two-step sampling technique:random under-sampling and the Synthetic Minority Oversampling Technique(SMOTE),is proposed to balance the dataset.The proposed system utilizes a multiple hidden layer Auto-encoder(AE)for feature extraction and dimensional reduction.In addition,an ensemble voting based on both Random Forest(RF)and Convolu-tional Neural Network(CNN)is developed to classify the multiclass attack cate-gories.The proposed system is evaluated and compared with six different state-of-the-art machine learning and deep learning algorithms:Random Forest(RF),Light Gradient Boosting Machine(LightGBM),eXtreme Gradient Boosting(XGboost),Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and bidirectional LSTM(biLSTM).Experimental results show that the proposed model enhances the detection for each attack class compared with the other machine learning and deep learning models with overall accuracy(98.29%),precision(99%),recall(98%),F_(1) score(98%),and the UNDetection rate(UND)(8%). 展开更多
关键词 Advanced metering infrastructure smart grid cyberattack ensemble voting anomaly detection system CICIDS2017
下载PDF
Reactions’Descriptors Selection and Yield Estimation Using Metaheuristic Algorithms and Voting Ensemble
2
作者 Olutomilayo Olayemi Petinrin Faisal Saeed +2 位作者 Xiangtao Li Fahad Ghabban Ka-Chun Wong 《Computers, Materials & Continua》 SCIE EI 2022年第3期4745-4762,共18页
Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessa... Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessary for the estimation of yields in these reactions.This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation.The algorithms were evaluated based on computational time and the number of selected descriptors.Analyses show that robust performance is obtained with more descriptors,compared to cases where fewer descriptors are selected.The essential descriptor was deduced based on the frequency of occurrence within the 50 extracted data subsets,and better performance was achieved with the voting ensemble than other algorithms with RMSE of 6.4270 and R^(2) of 0.9423.The results and deductions from this study can be readily applied in the decision-making process of chemical synthesis by saving the computational cost associated with initial descriptor selection for yield estimation.The ensemble model has also shown robust performance in its yield estimation ability and efficiency. 展开更多
关键词 Buchwald-Hartwig reaction descriptor selection machine learning metaheuristic algorithm palladium-catalyzed cross-coupling reaction voting ensemble
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部