This paper proposes an efficient scheme for deterministic generation of entangled coherent states for two atomic samples. In the scheme two collections of atoms are trapped in an optical cavity and driven by a classic...This paper proposes an efficient scheme for deterministic generation of entangled coherent states for two atomic samples. In the scheme two collections of atoms are trapped in an optical cavity and driven by a classical field. Under certain conditions the two atomic samples evolve from an coherent state to an entangled coherent state. During the interaction the cavity mode is always in the vacuum state and the atoms have no probability of being populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and atomic spontaneous emission.展开更多
We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. ...We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. Therefore, the scheme is insensitive to the atomic spontaneous emission and cavity decay. The scheme may be generalized to the deterministic generation of entangled coherent states for two atomic samples. In contrast with the previously proposed schemes of [Commun. Theor. Phys. 40 (2003) 103 and Chin. our scheme is greatly shortened and thus the deeoherence can Phys. B 18 (2009) 1045], the required interaction time in be effectively suppressed.展开更多
For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is inves...For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is investigated. It is found that suitable intensity-dependent coupling can enhance the entanglement transfer and make the atomic entanglement evolve periodically especially for the initially mixed atomic states. For SCS, the entanglement between the two modes is strengthened with the increase of the photon number difference (PND) between the two modes of the fields. When PND is odd, the entanglement between the atoms is less than that when PND is even.展开更多
Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level...Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10674025)
文摘This paper proposes an efficient scheme for deterministic generation of entangled coherent states for two atomic samples. In the scheme two collections of atoms are trapped in an optical cavity and driven by a classical field. Under certain conditions the two atomic samples evolve from an coherent state to an entangled coherent state. During the interaction the cavity mode is always in the vacuum state and the atoms have no probability of being populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and atomic spontaneous emission.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60878059 and 10947147the Funds of Educational Committee of Fujian Province under Grant Nos. JA09014 and JB08066the Funds from Fujian Normal University under Grant No. 2008100220
文摘We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. Therefore, the scheme is insensitive to the atomic spontaneous emission and cavity decay. The scheme may be generalized to the deterministic generation of entangled coherent states for two atomic samples. In contrast with the previously proposed schemes of [Commun. Theor. Phys. 40 (2003) 103 and Chin. our scheme is greatly shortened and thus the deeoherence can Phys. B 18 (2009) 1045], the required interaction time in be effectively suppressed.
基金The project supported by National Natural Science Foundation of China under Grant No.20376054
文摘For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is investigated. It is found that suitable intensity-dependent coupling can enhance the entanglement transfer and make the atomic entanglement evolve periodically especially for the initially mixed atomic states. For SCS, the entanglement between the two modes is strengthened with the increase of the photon number difference (PND) between the two modes of the fields. When PND is odd, the entanglement between the atoms is less than that when PND is even.
文摘Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.