In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii- Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the...In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii- Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the initial state and DM coupling parameter on the evolution of entanglement are investigated. The necessary and sufficient condition for the appearance of the entanglement sudden death (ESD) phenomenon has been deduced. The result shows that the ESD always occurs if the initial state is sufficiently impure for the given coupling parameter or the DM interaction is sufficiently strong for the given initial state. Moreover, the critical values of them are calculated.展开更多
We investigate the entanglement dynamics of a system composed of two non-interacting qubits, A and B. A third qubit, C, only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the D...We investigate the entanglement dynamics of a system composed of two non-interacting qubits, A and B. A third qubit, C, only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction can induce the entanglement sudden death (ESD) of the system qubits A and B, and properly mixing the initial state of the system and adjusting the state of qubit C are two effective methods of controlling ESD.展开更多
We investigate the bipartite entanglement dynamics of the system composed by three qubits A,B,and C.There is no interaction between A and B,and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction.We f...We investigate the bipartite entanglement dynamics of the system composed by three qubits A,B,and C.There is no interaction between A and B,and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction.We find that the purity of qubits A and B and the initial state of the qubit C are the two effective parameters tocontrol the entanglement dynamics of the bipartite subsystems.This study sheds some lights on the control of quantumentanglement,which would be helpful for quantum information processing.展开更多
The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis Cummings model have been investigated by means of W...The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis Cummings model have been investigated by means of Wootters' concurrence, respectively. The results show that the entanglement between the two atoms can be enhanced via appropriately tuning the strength of dipole-dipole interaction of two atoms or the detunings between atom and cavity, and the so-called sudden death effect can he weakened simultaneously.展开更多
This paper studies the entanglement dynamics of the system S composed of two non-interactional qubits A and B. The third qubit C is its environment, E, which only interacts with the S qubit B by the Dzyaloshinskii-Mor...This paper studies the entanglement dynamics of the system S composed of two non-interactional qubits A and B. The third qubit C is its environment, E, which only interacts with the S qubit B by the Dzyaloshinskii-Moriya spin-orbit coupling. Considering the following states as the whole (S+E): the initially S-E correlated state and the separable one, the entanglement of S has no sudden death for the former case. This result sheds some light on the control of quantum entanglement, which will be helpful for quantum information processing.展开更多
We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden d...We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden death and sudden birth phenomena, that with the increase of photon numbers in the two cavities, the alternate frequency of sudden death and sudden birth turns fast, and that the amplitude of concurrence oscillates regularly with oscillation frequency becoming slow when the cavity fields have the same photon numbers. While, the maximum of concurrence declines and the amplitude of concurrence oscillates irregularly when the two cavity fields have different photon numbers. In addition, we find the length of death time is dependent on the initial entanglement.展开更多
We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. ...We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qurit C are also important to control its Entanglement Sudden Birth.展开更多
基金supported by National Natural Science Foundation of China (Grant No 10374007)
文摘In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii- Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the initial state and DM coupling parameter on the evolution of entanglement are investigated. The necessary and sufficient condition for the appearance of the entanglement sudden death (ESD) phenomenon has been deduced. The result shows that the ESD always occurs if the initial state is sufficiently impure for the given coupling parameter or the DM interaction is sufficiently strong for the given initial state. Moreover, the critical values of them are calculated.
基金Supported by National Natural Science Foundation of China (10535010,10775123)Natural Science and Technology Foundation of Guizhou Province ([2009]2267)Doctor Funding of Guizhou Normal University
文摘We investigate the entanglement dynamics of a system composed of two non-interacting qubits, A and B. A third qubit, C, only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction can induce the entanglement sudden death (ESD) of the system qubits A and B, and properly mixing the initial state of the system and adjusting the state of qubit C are two effective methods of controlling ESD.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10535010 and 10775123Research Fund of Education Ministry under Grant No.20070284016+1 种基金the Natural Science and Technology Foundation of Guizhou Province under Grant Nos.[2009]2267the Doctor funding of Guizhou Normal University
文摘We investigate the bipartite entanglement dynamics of the system composed by three qubits A,B,and C.There is no interaction between A and B,and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction.We find that the purity of qubits A and B and the initial state of the qubit C are the two effective parameters tocontrol the entanglement dynamics of the bipartite subsystems.This study sheds some lights on the control of quantumentanglement,which would be helpful for quantum information processing.
基金supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis Cummings model have been investigated by means of Wootters' concurrence, respectively. The results show that the entanglement between the two atoms can be enhanced via appropriately tuning the strength of dipole-dipole interaction of two atoms or the detunings between atom and cavity, and the so-called sudden death effect can he weakened simultaneously.
基金Supported by National Fundamental Research Programme of China (2010CB327803, 2007CB815004)National Natural Science Foundation of China (11065005)
文摘This paper studies the entanglement dynamics of the system S composed of two non-interactional qubits A and B. The third qubit C is its environment, E, which only interacts with the S qubit B by the Dzyaloshinskii-Moriya spin-orbit coupling. Considering the following states as the whole (S+E): the initially S-E correlated state and the separable one, the entanglement of S has no sudden death for the former case. This result sheds some light on the control of quantum entanglement, which will be helpful for quantum information processing.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60667001)
文摘We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden death and sudden birth phenomena, that with the increase of photon numbers in the two cavities, the alternate frequency of sudden death and sudden birth turns fast, and that the amplitude of concurrence oscillates regularly with oscillation frequency becoming slow when the cavity fields have the same photon numbers. While, the maximum of concurrence declines and the amplitude of concurrence oscillates irregularly when the two cavity fields have different photon numbers. In addition, we find the length of death time is dependent on the initial entanglement.
基金Supported by National Fundamental Research Programme of China (2010CB327803, 2007CB815004)National Natural Science Foundation of China (11065005, 10865004, 10775123)+2 种基金Governor's Foundation for Science and Education Elites of Guizhou Province QSZHZ (2010)20Natural Science and Technology Foundation of Guizhou Province ([2009]2267)Doctor Funding of Guizhou Normal University
文摘We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qurit C are also important to control its Entanglement Sudden Birth.