In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, includin...In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.展开更多
We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resona...We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.展开更多
Entanglement is used to measure correlation between separated subsystems, von Neumann entropy is used to study evolutions of entanglement of atoms in processes of interaction between atoms with the field prepared in c...Entanglement is used to measure correlation between separated subsystems, von Neumann entropy is used to study evolutions of entanglement of atoms in processes of interaction between atoms with the field prepared in coherent state. The effects of field intertsity and detuning on entanglement are investigated. It is shown that the entanglement exhibited oscillations in its evolutions, their amplitudes and mean values decrease with increasing field intensity. Oscillation frequencies increase with detuning, but the maximum values are almost independent of detuning.展开更多
The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY model are investigated. The multipartite entanglement increases as a function of the inverse strength of the e...The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY model are investigated. The multipartite entanglement increases as a function of the inverse strength of the external field when the degree of anisotropy is finite. There are two peaks when the degree of anisotropy is γ=±1. When the degree of anisotropy increases further, the multipartite entanglement will decrease and tend to a constant. The threshold of the inverse strength of the external field for generating multipartite entanglement generally decreases with the increasing of qubits.展开更多
The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic ...The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic systems. There are indications that the theories of relativity and quantum mechanics do not necessarily have to be in conflict. But more investigations are required for a full understanding to be obtained on these problems.展开更多
The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii-Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is invest...The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii-Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For the ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For the antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.展开更多
We have numerically calculated the thermal entanglement of a two-qubit system at low temperatures in a isotropic Ising chain under an inhomogeneous magnetic field. It is shown that in the homogeneous magnetic field, t...We have numerically calculated the thermal entanglement of a two-qubit system at low temperatures in a isotropic Ising chain under an inhomogeneous magnetic field. It is shown that in the homogeneous magnetic field, the two- qubit system has entangled states. It is concluded that the presence of the inhomogeneity in the magnetic field plays an effective role on the entangled states. Finally, it is suggested that the inhomogeneity in the magnetic field can be used to create two separated entangled formations in a two-qubit system.展开更多
The entanglement dynamics of system, where atoms A and B interact with single mode cavity fields a and b respectively, is studied. The interaction between atom A and cavity a may be described by using the typical Jayn...The entanglement dynamics of system, where atoms A and B interact with single mode cavity fields a and b respectively, is studied. The interaction between atom A and cavity a may be described by using the typical Jaynes Cummings model, while that between the atom B and cavity b filled with a Kerr medium is of a two-photon process. For a certain initial atom entanglement state, there is an entanglement sudden death effect between the two atoms. The Kerr medium in the cavity b can effectively prevent the undesirable entanglement sudden death from occurring. Also, from the viewpoint of the population dynamics, we discuss why the Kerr medium can do so.展开更多
This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function ...This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].展开更多
A scheme is proposed to simulate the Ising model and preserve the maximum entangled states (Bell states) in cavity quantum electrodynamics (QED) driven by a classical field with large detuning. In the strong driving a...A scheme is proposed to simulate the Ising model and preserve the maximum entangled states (Bell states) in cavity quantum electrodynamics (QED) driven by a classical field with large detuning. In the strong driving and large-detuning regime, the effective Hamiltonian of the system is the same as the standard Ising model, and the scheme can also make the initial four Bell states of two atoms at the maximum entanglement all the time. So it is a simple memory for the maximal entangled states. The system is insensitive to the cavity decay and the thermal field and more immune to decoherence. These advantages can warrant the experimental feasibility of the current scheme. Furthermore, the genuine four-atom entanglement may be acquired via two Bell states through one-step implementation on four two-level atoms in the strong-driven model, and when two Greenberger-Horne-Zeilinger (GHZ) states are prepared in our scheme, the entangled cluster state may be acquired easily. The success probability for the scheme is 1.展开更多
Authors investigate the model that two two level atoms interact with a single mode cavity. The formulation of the time evolution operator for the two atom Jaynes Cummings model is presented by the bare states approach...Authors investigate the model that two two level atoms interact with a single mode cavity. The formulation of the time evolution operator for the two atom Jaynes Cummings model is presented by the bare states approach. Besides, squeezing effect of the cavity field is studied and some novel features are obtained.展开更多
By introducing thermo-entangled state representation Ⅰη〉, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using "dissipative interaction picture" ...By introducing thermo-entangled state representation Ⅰη〉, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using "dissipative interaction picture" we solve the master equation of Jaynes-Cummings model with cavity damping. In addition we derive the Wigner function for density operator when the atom is initially in the up state Ⅰ↑〉 and the cavity mode is in coherent state.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3013)the Education Ministry of Hunan Province of China (Grant No. 06A038)
文摘In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant No.2021J01574).
文摘We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.
文摘Entanglement is used to measure correlation between separated subsystems, von Neumann entropy is used to study evolutions of entanglement of atoms in processes of interaction between atoms with the field prepared in coherent state. The effects of field intertsity and detuning on entanglement are investigated. It is shown that the entanglement exhibited oscillations in its evolutions, their amplitudes and mean values decrease with increasing field intensity. Oscillation frequencies increase with detuning, but the maximum values are almost independent of detuning.
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20050285002National Natural Science Foundation of China under Grant No.10774108
文摘The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY model are investigated. The multipartite entanglement increases as a function of the inverse strength of the external field when the degree of anisotropy is finite. There are two peaks when the degree of anisotropy is γ=±1. When the degree of anisotropy increases further, the multipartite entanglement will decrease and tend to a constant. The threshold of the inverse strength of the external field for generating multipartite entanglement generally decreases with the increasing of qubits.
文摘The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic systems. There are indications that the theories of relativity and quantum mechanics do not necessarily have to be in conflict. But more investigations are required for a full understanding to be obtained on these problems.
基金Supported by the Key Higher Education Programme of Hubei Province under Grant No Z20052201, the Natural Science Foundation of Hubei Province, China under Grant No 2006ABA055, and the Postgraduate Programme of Hubei Normal University under Grant No 2007D20.
文摘The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii-Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For the ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For the antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.
文摘We have numerically calculated the thermal entanglement of a two-qubit system at low temperatures in a isotropic Ising chain under an inhomogeneous magnetic field. It is shown that in the homogeneous magnetic field, the two- qubit system has entangled states. It is concluded that the presence of the inhomogeneity in the magnetic field plays an effective role on the entangled states. Finally, it is suggested that the inhomogeneity in the magnetic field can be used to create two separated entangled formations in a two-qubit system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10535010 and 10775123)the Research Foundation from Ministry of Education of China (contract No 20070284016)
文摘The entanglement dynamics of system, where atoms A and B interact with single mode cavity fields a and b respectively, is studied. The interaction between atom A and cavity a may be described by using the typical Jaynes Cummings model, while that between the atom B and cavity b filled with a Kerr medium is of a two-photon process. For a certain initial atom entanglement state, there is an entanglement sudden death effect between the two atoms. The Kerr medium in the cavity b can effectively prevent the undesirable entanglement sudden death from occurring. Also, from the viewpoint of the population dynamics, we discuss why the Kerr medium can do so.
基金Project supported by the National Natural Science Foundation of China(Grant No.11934020)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402).
文摘This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].
基金Supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘A scheme is proposed to simulate the Ising model and preserve the maximum entangled states (Bell states) in cavity quantum electrodynamics (QED) driven by a classical field with large detuning. In the strong driving and large-detuning regime, the effective Hamiltonian of the system is the same as the standard Ising model, and the scheme can also make the initial four Bell states of two atoms at the maximum entanglement all the time. So it is a simple memory for the maximal entangled states. The system is insensitive to the cavity decay and the thermal field and more immune to decoherence. These advantages can warrant the experimental feasibility of the current scheme. Furthermore, the genuine four-atom entanglement may be acquired via two Bell states through one-step implementation on four two-level atoms in the strong-driven model, and when two Greenberger-Horne-Zeilinger (GHZ) states are prepared in our scheme, the entangled cluster state may be acquired easily. The success probability for the scheme is 1.
文摘Authors investigate the model that two two level atoms interact with a single mode cavity. The formulation of the time evolution operator for the two atom Jaynes Cummings model is presented by the bare states approach. Besides, squeezing effect of the cavity field is studied and some novel features are obtained.
文摘By introducing thermo-entangled state representation Ⅰη〉, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using "dissipative interaction picture" we solve the master equation of Jaynes-Cummings model with cavity damping. In addition we derive the Wigner function for density operator when the atom is initially in the up state Ⅰ↑〉 and the cavity mode is in coherent state.