Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan...Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.展开更多
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of ...We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.展开更多
The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes ...The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.展开更多
In recent years, there have been intensive activities in the area of constructing quantum maximum distance separable(MDS for short) codes from constacyclic MDS codes through the Hermitian construction. In this paper, ...In recent years, there have been intensive activities in the area of constructing quantum maximum distance separable(MDS for short) codes from constacyclic MDS codes through the Hermitian construction. In this paper, a new class of quantum MDS code is constructed, which extends the result of [Theorems 3.14–3.15, Kai, X., Zhu, S., and Li,P., IEEE Trans. on Inf. Theory, 60(4), 2014, 2080–2086], in the sense that our quantum MDS code has bigger minimum distance.展开更多
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802)the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175)the Fundamental Research Funds for the Central Universities (Grant No.30923011014)。
文摘Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
基金supported by the National Basic Research Program of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60972046 and 60902030)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0852)the Natural Science Foundation of Shaanxi Province (Grant No.2010JQ8025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100203120004)the 111 Program (Grant No.B08038)the China Scholarship Council (Grant No.[2008]3019)
文摘We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.
基金supported by the National High Technology Research and Development Program of China under Grant No. 2011AA010803
文摘The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.
基金supported by the National Natural Science Foundation of China(Nos.11171150,113711138,11531002)the Foundation of Science and the Technology on Information Assurance Laboratory(No.KJ-15-009)
文摘In recent years, there have been intensive activities in the area of constructing quantum maximum distance separable(MDS for short) codes from constacyclic MDS codes through the Hermitian construction. In this paper, a new class of quantum MDS code is constructed, which extends the result of [Theorems 3.14–3.15, Kai, X., Zhu, S., and Li,P., IEEE Trans. on Inf. Theory, 60(4), 2014, 2080–2086], in the sense that our quantum MDS code has bigger minimum distance.