In our previous study,we prepared the granules by embedding artemisinin into alginate-chitosan using microcapsule technology.These granules can release artemisinin sustainably and have a strong inhibitory effect on th...In our previous study,we prepared the granules by embedding artemisinin into alginate-chitosan using microcapsule technology.These granules can release artemisinin sustainably and have a strong inhibitory effect on the growth of both single Microcystis aeruginosa and mixed algae.To safely and effectively use artemisinin sustained-release granules to control algal blooms,the ecotoxicity was studied by assessing their acute and chronic toxicity to Daphnia magna(D.magna)and Danio rerio(D.rerio),along with their antioxidant activities.The results showed that the 48-h median effective concentration(EC50)of pure artemisinin to D.magna was 24.54 mg/L and the 96-h median lethal concentration(LC50)of pure artemisinin to D.rerio was 68.08 mg/L.Both values were classified as intermediate toxicity according to the Organization for Economic Co-operation and Development(OECD).The optimal algae inhibitory concentration of artemisinin sustained-release granules(1 g/L)had low acute toxicity to both D.magna and D.rerio.The sustained-release granules had higher chronic toxicity to D.magna than to D.rerio.Partial indices of D.magna were inhibited by granules when the concentrations were larger than 0.1 g/L.Low granule concentration had an inductive effect on antioxidant enzyme activities in D.magna and D.rerio.With the increase of the exposure concentration and time,the enzyme activity presented a trend of first increasing and then decreasing,and the overall changes were significant.The change trend and range of enzyme activity indicated that the granules could cause serious oxidative stress to D.magna and D.rerio,and the changes were consistent with the results of toxicity experimentation.展开更多
To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated a...To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosanalginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastrointestinal tract and prolong the drug's action time.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.91647206 and 51779079)the Program for Changjiang Scholars and Innovative Research Team at Hohai University(Grant No.IRT13061)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘In our previous study,we prepared the granules by embedding artemisinin into alginate-chitosan using microcapsule technology.These granules can release artemisinin sustainably and have a strong inhibitory effect on the growth of both single Microcystis aeruginosa and mixed algae.To safely and effectively use artemisinin sustained-release granules to control algal blooms,the ecotoxicity was studied by assessing their acute and chronic toxicity to Daphnia magna(D.magna)and Danio rerio(D.rerio),along with their antioxidant activities.The results showed that the 48-h median effective concentration(EC50)of pure artemisinin to D.magna was 24.54 mg/L and the 96-h median lethal concentration(LC50)of pure artemisinin to D.rerio was 68.08 mg/L.Both values were classified as intermediate toxicity according to the Organization for Economic Co-operation and Development(OECD).The optimal algae inhibitory concentration of artemisinin sustained-release granules(1 g/L)had low acute toxicity to both D.magna and D.rerio.The sustained-release granules had higher chronic toxicity to D.magna than to D.rerio.Partial indices of D.magna were inhibited by granules when the concentrations were larger than 0.1 g/L.Low granule concentration had an inductive effect on antioxidant enzyme activities in D.magna and D.rerio.With the increase of the exposure concentration and time,the enzyme activity presented a trend of first increasing and then decreasing,and the overall changes were significant.The change trend and range of enzyme activity indicated that the granules could cause serious oxidative stress to D.magna and D.rerio,and the changes were consistent with the results of toxicity experimentation.
基金supported by the program of supporting career development of young and middle-aged teachers from Shenyang Pharmaceutical University (ZQN2015011)the Open fund of Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine(zyzx1608)
文摘To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosanalginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastrointestinal tract and prolong the drug's action time.