In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w...In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.展开更多
This article provides a closed form solution to the telegrapher’s equation with three space variables defined on a subset of a sphere within two radii, two azimuthal angles and one polar angle. The Dirichlet problem ...This article provides a closed form solution to the telegrapher’s equation with three space variables defined on a subset of a sphere within two radii, two azimuthal angles and one polar angle. The Dirichlet problem for general boundary conditions is solved in detail, on the basis of which Neumann and Robin conditions are easily handled. The solution to the simpler problem in cylindrical coordinates is also provided. Ways to efficiently implement the formulae are explained. Minor adjustments result in solutions to the wave equation and to the heat equation on the same domain as well, since the latter are particular cases of the more general telegrapher’s equation.展开更多
基金The Project was supported by National Natural Science Foundation of China
文摘In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.
文摘This article provides a closed form solution to the telegrapher’s equation with three space variables defined on a subset of a sphere within two radii, two azimuthal angles and one polar angle. The Dirichlet problem for general boundary conditions is solved in detail, on the basis of which Neumann and Robin conditions are easily handled. The solution to the simpler problem in cylindrical coordinates is also provided. Ways to efficiently implement the formulae are explained. Minor adjustments result in solutions to the wave equation and to the heat equation on the same domain as well, since the latter are particular cases of the more general telegrapher’s equation.