As an important technology of digital construction,real 3D models can improve the immersion and realism of virtual reality(VR)scenes.The large amount of data for real 3D scenes requires more effective rendering method...As an important technology of digital construction,real 3D models can improve the immersion and realism of virtual reality(VR)scenes.The large amount of data for real 3D scenes requires more effective rendering methods,but the current rendering optimization methods have some defects and cannot render real 3D scenes in virtual reality.In this study,the location of the viewing frustum is predicted by a Kalman filter,and eye-tracking equipment is used to recognize the region of interest(ROI)in the scene.Finally,the real 3D model of interest in the predicted frustum is rendered first.The experimental results show that the method of this study can predict the frustrum location approximately 200 ms in advance,the prediction accuracy is approximately 87%,the scene rendering efficiency is improved by 8.3%,and the motion sickness is reduced by approximately 54.5%.These studies help promote the use of real 3D models in virtual reality and ROI recognition methods.In future work,we will further improve the prediction accuracy of viewing frustums in virtual reality and the application of eye tracking in virtual geographic scenes.展开更多
Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must...Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must balance the visual quality of the models with the rendering efficiency.The study provides a practical texture baking processing pipeline for generating 3D models to reduce the model complexity and preserve the visually pleasing details.Concretely,we apply a mesh simplification to the original model and use texture baking to create three types of baked textures,namely,a diffuse map,normal map and displacement map.The simplified model with the baked textures has a pleasing visualization effect in a rendering engine.Furthermore,we discuss the influence of various factors in the process on the results,as well as the functional principles and characteristics of the baking textures.The proposed approach is very useful for real-time rendering with limited rendering hardware as no additional memory or computing capacity is required for properly preserving the relief details of the model.Each step in the pipeline is described in detail to facilitate the realization.展开更多
基金supported by the National Natural Science Foundation of China(grant numbers U2034202,41871289,42171397)the Sichuan Science and Technology Program(grant number 2020JDTD0003).
文摘As an important technology of digital construction,real 3D models can improve the immersion and realism of virtual reality(VR)scenes.The large amount of data for real 3D scenes requires more effective rendering methods,but the current rendering optimization methods have some defects and cannot render real 3D scenes in virtual reality.In this study,the location of the viewing frustum is predicted by a Kalman filter,and eye-tracking equipment is used to recognize the region of interest(ROI)in the scene.Finally,the real 3D model of interest in the predicted frustum is rendered first.The experimental results show that the method of this study can predict the frustrum location approximately 200 ms in advance,the prediction accuracy is approximately 87%,the scene rendering efficiency is improved by 8.3%,and the motion sickness is reduced by approximately 54.5%.These studies help promote the use of real 3D models in virtual reality and ROI recognition methods.In future work,we will further improve the prediction accuracy of viewing frustums in virtual reality and the application of eye tracking in virtual geographic scenes.
基金supported by the Key Program of the National Natural Science Foundation of China[grant no 41930104].
文摘Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must balance the visual quality of the models with the rendering efficiency.The study provides a practical texture baking processing pipeline for generating 3D models to reduce the model complexity and preserve the visually pleasing details.Concretely,we apply a mesh simplification to the original model and use texture baking to create three types of baked textures,namely,a diffuse map,normal map and displacement map.The simplified model with the baked textures has a pleasing visualization effect in a rendering engine.Furthermore,we discuss the influence of various factors in the process on the results,as well as the functional principles and characteristics of the baking textures.The proposed approach is very useful for real-time rendering with limited rendering hardware as no additional memory or computing capacity is required for properly preserving the relief details of the model.Each step in the pipeline is described in detail to facilitate the realization.