The slag composition corresponding to different coals varies significantly,which directly affects the operation of industrial entrained-flow gasifier and the service life of refractory bricks.In this study,the corrosi...The slag composition corresponding to different coals varies significantly,which directly affects the operation of industrial entrained-flow gasifier and the service life of refractory bricks.In this study,the corrosion resistance of several typical coal slags for gasification on high chromia refractory bricks was comparatively investigated by static laboratory crucible tests and thermodynamic simulations.The results demonstrated that the corrosion degree of high chromia refractory bricks by different coal slags was high-Ca/Na slag>high-Fe slag>high-Si/Al slag.The surface structure of the refractory was relatively flat after corrosion by high-Si/Al slag,and the primary corrosion reaction was the partial dissolution of the matrix by the slag.High-Fe slag was prone to the precipitation of iron phases as well as the formation of(Mg,Fe)(Al,Cr)_(2)O_(4)composite spinel layer at the slag/refractory interface.The high-Ca/Na slag was susceptible to react with the refractory to yield a low melting point phase,which led to the destruction of the matrix structure of the refractory and an isolated distribution of particles.In addition,the monoclinic ZrO_(2) in the refractory reacted with CaO in the slag to formed calcium zirconate,which loosened its phase toughening effect,was the primary factor that aggravated the refractory corrosion.展开更多
In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furn...In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.展开更多
A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. Th...A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.展开更多
Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effect...Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives.展开更多
A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer cau...A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.展开更多
The main characteristics of high chrome refractories for coal water slurry gasifiers were introduced. The damage mechanism of the refractories was analyzed by observing the microstructure of the used high chrome refra...The main characteristics of high chrome refractories for coal water slurry gasifiers were introduced. The damage mechanism of the refractories was analyzed by observing the microstructure of the used high chrome refractories with the aid of SEM. The main influencing factors on the service life of the refractories were summarized.展开更多
A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly eff...A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly efficient, and compact power plant or to retrofit an existing coal-fired power plant in order to achieve lower emissions and significantly improved thermal efficiency. The core technology of the mild gasification power plant lies on the design of a compact and effective mild gasifier that can produce synthesis gases with high energy volatiles through a hybrid system: utilizing the features of both entrained-flow and fluidized bed gasifiers. To aid in the design of the mild gasifier, a computational model has been implemented to investigate the thermal-flow and gasification process inside this mild gasifier using the commercial CFD (Computational Fluid Dynamics) solver ANSYS/FLUENT. The Eulerian-Eulerian method is employed to model both the primary phase (air) and the secondary phase (coal particles). However, the Eulerian-Eulerian model used in the software does not facilitate any built-in devolatilization model. The objective of this study is therefore to implement a devolatilization model (along with demoisturization) and incorporate it into the existing code. The Navier-Stokes equations and seven species transport equations are solved with three heterogeneous (gas-solid) and two homogeneous (gas-gas) global gasification reactions. Implementation of the complete model starts from adding demoisturization first, then devolatilization, and then adding one chemical equation at a time until finally all reactions are included in the multiphase flow. The result shows that the demoisturization and devolatilization models are successfully incorporated and a large amount of volatiles are preserved as high-energy fuels in the syngas stream without being further cracked or reacted into lighter gases. The overall results are encouraging but require future experimental data for verification.展开更多
The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the s...The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the second stage to allow the endothermic gasification process to occur downstream of the second stage. One of the merits of this 2-stage practice is to keep the gasifier temperature low downstream from the 2nd stage. This helps to extend the life of refractory bricks, decrease gasifier shut-down frequency for scheduled maintenance, and reduce the maintenance costs. In this traditional 2-stage practice, the temperature reduction in the second stage is achieved at the expense of a higher than normal temperature in the first stage. This study investigates a concept totally opposite to the traditional two-stage coal feeding practices in which the injected oxygen is split between the two stages, while all the coal is fed into the first stage. The hypothesis of this two-stage oxygen injection is that a distributed oxygen injection scheme can also distribute the release of heat to a larger gasifier volume and, thus, reduce the peak temperature distribution in the gasifier. The increased life expectancy and reduced maintenance of the refractory bricks can prevail in the entire gasifier and not just downstream from the second stage. In this study, both experiments and computational simulations have been performed to verify the hypothesis. A series of experiments conducted at 2.5 - 3.0 bars shows that the peak temperature and temperature range in the gasifier do decrease from 600?C - 1550?C with one stage oxygen injection to 950?C - 1230?C with a 60 - 40 oxygen split-injection. The CFD results conducted at 2.5 bars show that 1) the carbon conversion ratio for different oxygen injection schemes are all above 95%;2) H2 (about 70% vol.) dominates the syngas composition at the exit;3) the 80% - 20% case yields the lowest peak temperature and the most uniform temperature distribution along the gasifier;and 4) the 40% - 60% case produces the syngas with the highest HHV. Both experimental data and CFD predictions verify the hypothesis that it is feasible to reduce the peak temperature and achieve more uniform temperature in the gasifier by adequately controlling a two-stage oxygen injection with only minor changes of the composition and heating value of the syngas.展开更多
基金financial support from the Joint Funds of the National Natural Science Foundation of China(U21A20318).
文摘The slag composition corresponding to different coals varies significantly,which directly affects the operation of industrial entrained-flow gasifier and the service life of refractory bricks.In this study,the corrosion resistance of several typical coal slags for gasification on high chromia refractory bricks was comparatively investigated by static laboratory crucible tests and thermodynamic simulations.The results demonstrated that the corrosion degree of high chromia refractory bricks by different coal slags was high-Ca/Na slag>high-Fe slag>high-Si/Al slag.The surface structure of the refractory was relatively flat after corrosion by high-Si/Al slag,and the primary corrosion reaction was the partial dissolution of the matrix by the slag.High-Fe slag was prone to the precipitation of iron phases as well as the formation of(Mg,Fe)(Al,Cr)_(2)O_(4)composite spinel layer at the slag/refractory interface.The high-Ca/Na slag was susceptible to react with the refractory to yield a low melting point phase,which led to the destruction of the matrix structure of the refractory and an isolated distribution of particles.In addition,the monoclinic ZrO_(2) in the refractory reacted with CaO in the slag to formed calcium zirconate,which loosened its phase toughening effect,was the primary factor that aggravated the refractory corrosion.
基金the Financial Supported by Hunan Provincial Natural Science Foundation of China(No.2023JJ50224)2021–2022 Hunan Province Enterprise Science and Technology Commissioner Program Project(No.2021GK5046)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50013)Hunan Provincial Natural Science Foundation of China(No.2022JJ50041).
文摘In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202,61174118)+1 种基金the National Science Fund for Outstanding Young Scholars(61222303)Shanghai Leading Academic Discipline Project(B504)
文摘A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.
文摘Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives.
文摘A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.
文摘The main characteristics of high chrome refractories for coal water slurry gasifiers were introduced. The damage mechanism of the refractories was analyzed by observing the microstructure of the used high chrome refractories with the aid of SEM. The main influencing factors on the service life of the refractories were summarized.
文摘A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly efficient, and compact power plant or to retrofit an existing coal-fired power plant in order to achieve lower emissions and significantly improved thermal efficiency. The core technology of the mild gasification power plant lies on the design of a compact and effective mild gasifier that can produce synthesis gases with high energy volatiles through a hybrid system: utilizing the features of both entrained-flow and fluidized bed gasifiers. To aid in the design of the mild gasifier, a computational model has been implemented to investigate the thermal-flow and gasification process inside this mild gasifier using the commercial CFD (Computational Fluid Dynamics) solver ANSYS/FLUENT. The Eulerian-Eulerian method is employed to model both the primary phase (air) and the secondary phase (coal particles). However, the Eulerian-Eulerian model used in the software does not facilitate any built-in devolatilization model. The objective of this study is therefore to implement a devolatilization model (along with demoisturization) and incorporate it into the existing code. The Navier-Stokes equations and seven species transport equations are solved with three heterogeneous (gas-solid) and two homogeneous (gas-gas) global gasification reactions. Implementation of the complete model starts from adding demoisturization first, then devolatilization, and then adding one chemical equation at a time until finally all reactions are included in the multiphase flow. The result shows that the demoisturization and devolatilization models are successfully incorporated and a large amount of volatiles are preserved as high-energy fuels in the syngas stream without being further cracked or reacted into lighter gases. The overall results are encouraging but require future experimental data for verification.
文摘The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the second stage to allow the endothermic gasification process to occur downstream of the second stage. One of the merits of this 2-stage practice is to keep the gasifier temperature low downstream from the 2nd stage. This helps to extend the life of refractory bricks, decrease gasifier shut-down frequency for scheduled maintenance, and reduce the maintenance costs. In this traditional 2-stage practice, the temperature reduction in the second stage is achieved at the expense of a higher than normal temperature in the first stage. This study investigates a concept totally opposite to the traditional two-stage coal feeding practices in which the injected oxygen is split between the two stages, while all the coal is fed into the first stage. The hypothesis of this two-stage oxygen injection is that a distributed oxygen injection scheme can also distribute the release of heat to a larger gasifier volume and, thus, reduce the peak temperature distribution in the gasifier. The increased life expectancy and reduced maintenance of the refractory bricks can prevail in the entire gasifier and not just downstream from the second stage. In this study, both experiments and computational simulations have been performed to verify the hypothesis. A series of experiments conducted at 2.5 - 3.0 bars shows that the peak temperature and temperature range in the gasifier do decrease from 600?C - 1550?C with one stage oxygen injection to 950?C - 1230?C with a 60 - 40 oxygen split-injection. The CFD results conducted at 2.5 bars show that 1) the carbon conversion ratio for different oxygen injection schemes are all above 95%;2) H2 (about 70% vol.) dominates the syngas composition at the exit;3) the 80% - 20% case yields the lowest peak temperature and the most uniform temperature distribution along the gasifier;and 4) the 40% - 60% case produces the syngas with the highest HHV. Both experimental data and CFD predictions verify the hypothesis that it is feasible to reduce the peak temperature and achieve more uniform temperature in the gasifier by adequately controlling a two-stage oxygen injection with only minor changes of the composition and heating value of the syngas.