The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Altho...The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Although porous material bearing appears larger load capacity, materials anisotropy itself and void content distortion caused in heat-treating, and machining processes add greater complexity to internal flow transfer process. Inherent compensated air bearing has the advantages of simple structure and good stability, but its load capacity and static stiffness is not worth somewhat. In this paper, based on hydrostatic lubrication theory, finite volume method is presented for taking entrance effects into account in computing pressure distribution, load capacity and mass flow rates of circular aerostatic thrust bearings. Technical analysis, numerical simulations and laboratory demonstration tests of influence of pocket diameter and pocket depth on loading capacity of aerostatic thrust bearing are carried out on simple orifice compensated air bearings with feeding pockets. The static parameters, such as air consumption and pressure distributions, are measured as a function of supply pressure and air gap height for several different orifices and pockets size. Entrance effects are described in term of typical throttling types, and the effect of pocket diameter and pocket depth on load capacity is systematically described respectively. The proposed research results uncover the causation of throttling action of the orifice compensated air bearing with feed pocket and further develop and improve the design theory of air bearing.展开更多
Entrance region may have important effect on gases flow characteristics in micro-channels. It's concluded in the available papers that the entrance effect causes significant difference. An experimental system of s...Entrance region may have important effect on gases flow characteristics in micro-channels. It's concluded in the available papers that the entrance effect causes significant difference. An experimental system of single-phase gas flow characteristics in microchannels was set up. Flow characteristics of nitrogen in PEEK polymer micro-tube (hydraulic diameter is 553btm) was studied experimentally. According to the data of nitrogen flow in the micro-tube with the length ranging from 0. 1m to1.524m, it is shown that the friction constant becomes higher when the tube becomes shorter. By using pipe cutting methods, it's confirmed that entrance effect is one of the key factors that cause friction constant higher than conventional theory. It's found that friction constant of fully developed flow is lower than the value predicted by conventional theory in turbulent region. The result indicates that the flow transition occurs at Reynolds number ranging from 1600-2000. The phenomenon of obvious early transition is not found.展开更多
There are more and more researches on heat transfer characteristics and prediction of supercritical CO_(2).The method of adding adiabatic section before and after heating section is usually adopted in these researches...There are more and more researches on heat transfer characteristics and prediction of supercritical CO_(2).The method of adding adiabatic section before and after heating section is usually adopted in these researches to ensure that the fluid entering the heating section is no longer affected by boundary layer,but the appropriate length range of adiabatic section and the influence of entrance effect are not discussed.However,some studies show that the entrance effect would affect the heat transfer in mini tubes.This paper uses the commercial CFD code FLUENT 19.0 to numerically study the heat transfer of supercritical CO_(2) in a mini tube under different working conditions(such as Re_(in),P_(in),q_(w) and flow direction)and the lengths of the adiabatic section(l_(as)/d).The entrance effects on heat transfer is more pronounced when Re_(in) is within the transition state and wall heat flux is relatively high,the resulting heat transfer deterioration causes T_(w,x) and h_(w,x) to rise sharply.As the adiabatic section increases,the location at which the heat exchange deteriorates moves to the entrance of the heating section and eventually leaves.The buoyancy effect and flow acceleration effect caused by the sharp change of physical properties are analyzed,and the dimensionless velocity distribution at the inlet of the heating section in different adiabatic sections is compared.It is proved that the entrance effect has an influence on the convection heat transfer of supercritical CO_(2) in mini tubes.The interaction reflected by wall shear stress between boundary layer development and drastic changes in physical properties is the cause of heat transfer deterioration.展开更多
When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located do...When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon.展开更多
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t...A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.展开更多
Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs* and 2S6Cn* are investigated. The fusion probability as a function of DNS excitation energy is st...Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs* and 2S6Cn* are investigated. The fusion probability as a function of DNS excitation energy is studied. The calculated results are in good agreement with the available experimental data. The obtained results show that the fusion probabilities are obviously enhanced for the reactions located at high place in potential energy surface, although these reactions may have small values of mass asymmetry. It is found that the enhancement is due to the large potential energy of the initial DNS.展开更多
An experimental study on condensation heat transfer of R410 A in short vertical tubes(8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300 mm to 600 mm...An experimental study on condensation heat transfer of R410 A in short vertical tubes(8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300 mm to 600 mm at mass fluxes range of 58–246 kg m-2s-1 and saturation temperature of 38℃. Effects of mass flux, tube length on condensation heat transfer coefficient were investigated. The distribution of temperature, thickness of condensate film and local condensation heat transfer coefficient along the tube were also analyzed.. It is indicated that the entrance effect played an important role in condensation heat transfer of vertical tube, and the influence of entrance effect on average condensation heat transfer coefficients will weaken with the length of tube in the experimental condensation. The experimental results were compared with four well known correlations available in literatures, and the Chen correlation shows good agreement with the experimental data but with ±40% deviation. A new modified condensation heat transfer correlation with 12.7% mean deviation was developed to predict the condensation heat transfer coefficients in short vertical tube based on the experimental data.展开更多
基金supported by Basic Scientific Research Project of National Natural Science Foundation of China (Grant No. k1402040202)
文摘The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Although porous material bearing appears larger load capacity, materials anisotropy itself and void content distortion caused in heat-treating, and machining processes add greater complexity to internal flow transfer process. Inherent compensated air bearing has the advantages of simple structure and good stability, but its load capacity and static stiffness is not worth somewhat. In this paper, based on hydrostatic lubrication theory, finite volume method is presented for taking entrance effects into account in computing pressure distribution, load capacity and mass flow rates of circular aerostatic thrust bearings. Technical analysis, numerical simulations and laboratory demonstration tests of influence of pocket diameter and pocket depth on loading capacity of aerostatic thrust bearing are carried out on simple orifice compensated air bearings with feeding pockets. The static parameters, such as air consumption and pressure distributions, are measured as a function of supply pressure and air gap height for several different orifices and pockets size. Entrance effects are described in term of typical throttling types, and the effect of pocket diameter and pocket depth on load capacity is systematically described respectively. The proposed research results uncover the causation of throttling action of the orifice compensated air bearing with feed pocket and further develop and improve the design theory of air bearing.
基金supported by the National Natural Science Foundation of China (No. 50776006)"863" plan (No. 2006AA05Z228)Technological Innova tion Fund of Excellent Doctoral Candidate of Beijing Jiaotong University (No. 48013)
文摘Entrance region may have important effect on gases flow characteristics in micro-channels. It's concluded in the available papers that the entrance effect causes significant difference. An experimental system of single-phase gas flow characteristics in microchannels was set up. Flow characteristics of nitrogen in PEEK polymer micro-tube (hydraulic diameter is 553btm) was studied experimentally. According to the data of nitrogen flow in the micro-tube with the length ranging from 0. 1m to1.524m, it is shown that the friction constant becomes higher when the tube becomes shorter. By using pipe cutting methods, it's confirmed that entrance effect is one of the key factors that cause friction constant higher than conventional theory. It's found that friction constant of fully developed flow is lower than the value predicted by conventional theory in turbulent region. The result indicates that the flow transition occurs at Reynolds number ranging from 1600-2000. The phenomenon of obvious early transition is not found.
文摘There are more and more researches on heat transfer characteristics and prediction of supercritical CO_(2).The method of adding adiabatic section before and after heating section is usually adopted in these researches to ensure that the fluid entering the heating section is no longer affected by boundary layer,but the appropriate length range of adiabatic section and the influence of entrance effect are not discussed.However,some studies show that the entrance effect would affect the heat transfer in mini tubes.This paper uses the commercial CFD code FLUENT 19.0 to numerically study the heat transfer of supercritical CO_(2) in a mini tube under different working conditions(such as Re_(in),P_(in),q_(w) and flow direction)and the lengths of the adiabatic section(l_(as)/d).The entrance effects on heat transfer is more pronounced when Re_(in) is within the transition state and wall heat flux is relatively high,the resulting heat transfer deterioration causes T_(w,x) and h_(w,x) to rise sharply.As the adiabatic section increases,the location at which the heat exchange deteriorates moves to the entrance of the heating section and eventually leaves.The buoyancy effect and flow acceleration effect caused by the sharp change of physical properties are analyzed,and the dimensionless velocity distribution at the inlet of the heating section in different adiabatic sections is compared.It is proved that the entrance effect has an influence on the convection heat transfer of supercritical CO_(2) in mini tubes.The interaction reflected by wall shear stress between boundary layer development and drastic changes in physical properties is the cause of heat transfer deterioration.
基金supported by the Research Project of the Technical Inspection Center of Sinopec Shengli Oilfield Company.
文摘When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon.
基金Supported by National Basic Research Program of China("973"Program,No.2011CB707203)
文摘A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.
基金Supported by Natural Science Foundation of Guangdong Province China(2016A030310208)National Natural Science Foundation of China(11605296,11405278,11505150,11635003)+1 种基金Fundamental Research Funds for the Central Universities(15 lgpy 30)China Postdoctoral Science Foundation(2015M582730)
文摘Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs* and 2S6Cn* are investigated. The fusion probability as a function of DNS excitation energy is studied. The calculated results are in good agreement with the available experimental data. The obtained results show that the fusion probabilities are obviously enhanced for the reactions located at high place in potential energy surface, although these reactions may have small values of mass asymmetry. It is found that the enhancement is due to the large potential energy of the initial DNS.
基金supported by National Key Technology R&D Program(2012BAB12B02)
文摘An experimental study on condensation heat transfer of R410 A in short vertical tubes(8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300 mm to 600 mm at mass fluxes range of 58–246 kg m-2s-1 and saturation temperature of 38℃. Effects of mass flux, tube length on condensation heat transfer coefficient were investigated. The distribution of temperature, thickness of condensate film and local condensation heat transfer coefficient along the tube were also analyzed.. It is indicated that the entrance effect played an important role in condensation heat transfer of vertical tube, and the influence of entrance effect on average condensation heat transfer coefficients will weaken with the length of tube in the experimental condensation. The experimental results were compared with four well known correlations available in literatures, and the Chen correlation shows good agreement with the experimental data but with ±40% deviation. A new modified condensation heat transfer correlation with 12.7% mean deviation was developed to predict the condensation heat transfer coefficients in short vertical tube based on the experimental data.