A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to ...A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.展开更多
This review paper summarizes constructal design progress performed by the authors for eight types of heat sinks with ten performance indexes being taken as the optimization objectives,respectively,by combining the met...This review paper summarizes constructal design progress performed by the authors for eight types of heat sinks with ten performance indexes being taken as the optimization objectives,respectively,by combining the methods of theoretical analysis and numerical calculation.The eight types of heat sinks are uniform height rectangular fin heat sink,non-uniform height rectangular fin heat sink,inline cylindrical pin-fin heat sink(ICPHS),plate single-row pin fin heat sink(PSRPHS),plate inline pin fin heat sink(PIPHS),plate staggered pin fin heat sink(PSPHS),single-layered microchannel heat sink(SLMCHS)with rectangular cross sections and double-layered microchannel heat sink(DLMCHS)with rectangular cross sections,respectively.And the ten performance indexes are heat transfer rate maximization,maximum thermal resistance minimization,minimization of equivalent thermal resistance which is defined based on the entransy dissipation rate(equivalent thermal resistance for short),field synergy number maximization,entropy generation rate minimization,operation cost minimization,thermo-economic function value minimization,pressure drop minimization,enhanced heat transfer factor maximization and efficiency evaluation criterion number maximization,respectively.The optimal constructs of the eight types of heat sinks with different constraints and based on the different optimization objectives are compared with each other.The results indicated that the optimal constructs mostly are different based on different optimization objectives under the same boundary condition.The optimization objective should be suitable chosen based on the focus when the constructal design for one heat sink is performed.The results obtained herein have some important theoretical significances and application values,and can provide scientific bases and theoretical guidelines for the thermal design of real heat sinks and their applications.展开更多
基金Supported by the National Key Basic Research Program of China(2013CB228305)
文摘A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51779262,51506220 and 51579244)。
文摘This review paper summarizes constructal design progress performed by the authors for eight types of heat sinks with ten performance indexes being taken as the optimization objectives,respectively,by combining the methods of theoretical analysis and numerical calculation.The eight types of heat sinks are uniform height rectangular fin heat sink,non-uniform height rectangular fin heat sink,inline cylindrical pin-fin heat sink(ICPHS),plate single-row pin fin heat sink(PSRPHS),plate inline pin fin heat sink(PIPHS),plate staggered pin fin heat sink(PSPHS),single-layered microchannel heat sink(SLMCHS)with rectangular cross sections and double-layered microchannel heat sink(DLMCHS)with rectangular cross sections,respectively.And the ten performance indexes are heat transfer rate maximization,maximum thermal resistance minimization,minimization of equivalent thermal resistance which is defined based on the entransy dissipation rate(equivalent thermal resistance for short),field synergy number maximization,entropy generation rate minimization,operation cost minimization,thermo-economic function value minimization,pressure drop minimization,enhanced heat transfer factor maximization and efficiency evaluation criterion number maximization,respectively.The optimal constructs of the eight types of heat sinks with different constraints and based on the different optimization objectives are compared with each other.The results indicated that the optimal constructs mostly are different based on different optimization objectives under the same boundary condition.The optimization objective should be suitable chosen based on the focus when the constructal design for one heat sink is performed.The results obtained herein have some important theoretical significances and application values,and can provide scientific bases and theoretical guidelines for the thermal design of real heat sinks and their applications.